STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
ppaInorganic diphosphatase; Catalyzes the hydrolysis of inorganic pyrophosphate (PPi) forming two phosphate ions. (190 aa)    
Predicted Functional Partners:
atpF
ATP synthase F0, B subunit; Component of the F(0) channel, it forms part of the peripheral stalk, linking F(1) to F(0); Belongs to the ATPase B chain family.
   
 
 0.959
atpH
ATP synthase F1, delta subunit; F(1)F(0) ATP synthase produces ATP from ADP in the presence of a proton or sodium gradient. F-type ATPases consist of two structural domains, F(1) containing the extramembraneous catalytic core and F(0) containing the membrane proton channel, linked together by a central stalk and a peripheral stalk. During catalysis, ATP synthesis in the catalytic domain of F(1) is coupled via a rotary mechanism of the central stalk subunits to proton translocation; Belongs to the ATPase delta chain family.
  
 
 0.945
atpE
ATP synthase F0, C subunit; F(1)F(0) ATP synthase produces ATP from ADP in the presence of a proton or sodium gradient. F-type ATPases consist of two structural domains, F(1) containing the extramembraneous catalytic core and F(0) containing the membrane proton channel, linked together by a central stalk and a peripheral stalk. During catalysis, ATP synthesis in the catalytic domain of F(1) is coupled via a rotary mechanism of the central stalk subunits to proton translocation.
  
 
 0.941
atpG
ATP synthase F1, gamma subunit; Produces ATP from ADP in the presence of a proton gradient across the membrane. The gamma chain is believed to be important in regulating ATPase activity and the flow of protons through the CF(0) complex.
  
 
 0.941
atpA
ATP synthase F1, alpha subunit; Produces ATP from ADP in the presence of a proton gradient across the membrane. The alpha chain is a regulatory subunit. Belongs to the ATPase alpha/beta chains family.
  
 
 0.936
ppk
Polyphosphate kinase; Catalyzes the reversible transfer of the terminal phosphate of ATP to form a long-chain polyphosphate (polyP). Belongs to the polyphosphate kinase 1 (PPK1) family.
     
 0.936
atpD
ATP synthase F1, beta subunit; Produces ATP from ADP in the presence of a proton gradient across the membrane. The catalytic sites are hosted primarily by the beta subunits; Belongs to the ATPase alpha/beta chains family.
   
 
 0.927
atpB
ATP synthase F0, A subunit; Key component of the proton channel; it plays a direct role in the translocation of protons across the membrane.
  
 
 0.922
Caci_6987
PFAM: protein of unknown function DUF344; KEGG: fal:FRAAL4412 hypothetical protein.
    
 0.918
atpC
ATP synthase F1, epsilon subunit; Produces ATP from ADP in the presence of a proton gradient across the membrane.
   
 
  0.914
Your Current Organism:
Catenulispora acidiphila
NCBI taxonomy Id: 479433
Other names: C. acidiphila DSM 44928, Catenulispora acidiphila DSM 44928, Catenulispora acidiphila str. DSM 44928, Catenulispora acidiphila strain DSM 44928
Server load: low (18%) [HD]