STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
AKI99454.1Hypothetical protein. (594 aa)    
Predicted Functional Partners:
AKJ01789.1
Cytochrome c oxidase subunit CcoN; Belongs to the heme-copper respiratory oxidase family.
  
 
 0.961
nuoI
NADH-ubiquinone oxidoreductase chain I; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient.
  
 
 0.902
nuoD
NADH-ubiquinone oxidoreductase chain D; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient; Belongs to the complex I 49 kDa subunit family.
   
 
 0.888
nuoC
NADH-ubiquinone oxidoreductase chain C; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient; Belongs to the complex I 30 kDa subunit family.
   
 
 0.870
AKJ05302.1
NADH-ubiquinone oxidoreductase chain G.
  
 
 0.856
AKJ00643.1
NADH-ubiquinone oxidoreductase chain F; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. Belongs to the complex I 51 kDa subunit family.
   
 
 0.849
nuoB
NADH-ubiquinone oxidoreductase chain B; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient.
  
 
 0.821
AKI98758.1
Cytochrome c oxidase polypeptide III.
  
 
 0.807
AKJ07157.1
Cytochrome c oxidase polypeptide III.
  
 
 0.807
AKJ00644.1
NADH-ubiquinone oxidoreductase chain E.
   
 
 0.805
Your Current Organism:
Archangium gephyra
NCBI taxonomy Id: 48
Other names: A. gephyra, ATCC 25201, Chondrococcus cerebriformis, Chondromyces serpens, DSM 2261, Myxococcus cerebriformis
Server load: low (16%) [HD]