STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
AKJ01172.1Carboxylesterase, type B; Belongs to the type-B carboxylesterase/lipase family. (403 aa)    
Predicted Functional Partners:
rpsD
SSU ribosomal protein S4p; One of the primary rRNA binding proteins, it binds directly to 16S rRNA where it nucleates assembly of the body of the 30S subunit.
    
  0.688
rpsK
SSU ribosomal protein S11p; Located on the platform of the 30S subunit, it bridges several disparate RNA helices of the 16S rRNA. Forms part of the Shine- Dalgarno cleft in the 70S ribosome; Belongs to the universal ribosomal protein uS11 family.
    
  0.609
gmk
Guanylate kinase; Essential for recycling GMP and indirectly, cGMP.
   
 0.590
AKJ01173.1
Hypothetical protein.
       0.572
AKJ07043.1
Ribonuclease D.
    
  0.525
AKJ05512.1
Peptidase M28.
 
 0.458
AKJ03362.1
Peptidase, M20/M25/M40 family.
 
 0.442
rtcA
RNA 3'-terminal phosphate cyclase; Catalyzes the conversion of 3'-phosphate to a 2',3'-cyclic phosphodiester at the end of RNA. The mechanism of action of the enzyme occurs in 3 steps: (A) adenylation of the enzyme by ATP; (B) transfer of adenylate to an RNA-N3'P to produce RNA-N3'PP5'A; (C) and attack of the adjacent 2'-hydroxyl on the 3'-phosphorus in the diester linkage to produce the cyclic end product. The biological role of this enzyme is unknown but it is likely to function in some aspects of cellular RNA processing.
    
  0.439
rtcA-2
RNA 3'-terminal phosphate cyclase; Catalyzes the conversion of 3'-phosphate to a 2',3'-cyclic phosphodiester at the end of RNA. The mechanism of action of the enzyme occurs in 3 steps: (A) adenylation of the enzyme by ATP; (B) transfer of adenylate to an RNA-N3'P to produce RNA-N3'PP5'A; (C) and attack of the adjacent 2'-hydroxyl on the 3'-phosphorus in the diester linkage to produce the cyclic end product. The biological role of this enzyme is unknown but it is likely to function in some aspects of cellular RNA processing.
    
  0.439
AKJ07578.1
tolB protein precursor protein.
  
 0.430
Your Current Organism:
Archangium gephyra
NCBI taxonomy Id: 48
Other names: A. gephyra, ATCC 25201, Chondrococcus cerebriformis, Chondromyces serpens, DSM 2261, Myxococcus cerebriformis
Server load: low (24%) [HD]