STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
SIS87730.1AraC-type DNA-binding protein. (305 aa)    
Predicted Functional Partners:
SIS44630.1
Transcriptional regulator, AraC family.
  
 
   0.708
SIS87710.1
Cupin domain protein.
 
     0.683
rpoH
RNA polymerase, sigma 32 subunit, RpoH; Sigma factors are initiation factors that promote the attachment of RNA polymerase to specific initiation sites and are then released. This sigma factor is involved in regulation of expression of heat shock genes.
   
 
 0.503
rpoD
RNA polymerase, sigma 70 subunit, RpoD; Sigma factors are initiation factors that promote the attachment of RNA polymerase to specific initiation sites and are then released. This sigma factor is the primary sigma factor during exponential growth.
   
 
 0.503
rpoS
RNA polymerase, sigma 38 subunit, RpoS; Sigma factors are initiation factors that promote the attachment of RNA polymerase to specific initiation sites and are then released. This sigma factor is the master transcriptional regulator of the stationary phase and the general stress response.
   
 
 0.503
lexA
SOS-response transcriptional repressor, LexA; Represses a number of genes involved in the response to DNA damage (SOS response), including recA and lexA. In the presence of single-stranded DNA, RecA interacts with LexA causing an autocatalytic cleavage which disrupts the DNA-binding part of LexA, leading to derepression of the SOS regulon and eventually DNA repair.
   
   0.480
SIS76383.1
Transcriptional regulator, AraC family.
  
 
   0.452
SIT11899.1
Uncharacterized conserved protein PhnB, glyoxalase superfamily.
 
    0.422
SIS87673.1
Hypothetical protein.
 
     0.404
Your Current Organism:
Oleibacter marinus
NCBI taxonomy Id: 484498
Other names: BTCC B-675, DSM 24913, NBRC 105760, O. marinus, Oceanobacter sp. 1O14, Oceanobacter sp. 1O18, Oceanobacter sp. 2O1, Oleibacter marinus Teramoto et al. 2011, strain 2O1
Server load: low (28%) [HD]