STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
gcvTGlycine cleavage system protein T; The glycine cleavage system catalyzes the degradation of glycine. (366 aa)    
Predicted Functional Partners:
gcvH
Glycine cleavage system protein H; The glycine cleavage system catalyzes the degradation of glycine. The H protein shuttles the methylamine group of glycine from the P protein to the T protein.
 0.999
gcvP
Glycine dehydrogenase (aminomethyl-transferring); The glycine cleavage system catalyzes the degradation of glycine. The P protein binds the alpha-amino group of glycine through its pyridoxal phosphate cofactor; CO(2) is released and the remaining methylamine moiety is then transferred to the lipoamide cofactor of the H protein; Belongs to the GcvP family.
 0.999
glyA
Serine hydroxymethyltransferase; Catalyzes the reversible interconversion of serine and glycine with tetrahydrofolate (THF) serving as the one-carbon carrier. This reaction serves as the major source of one-carbon groups required for the biosynthesis of purines, thymidylate, methionine, and other important biomolecules. Also exhibits THF-independent aldolase activity toward beta-hydroxyamino acids, producing glycine and aldehydes, via a retro-aldol mechanism.
 
 0.997
LpdA
Dihydrolipoyl dehydrogenase; Derived by automated computational analysis using gene prediction method: Protein Homology.
  
 0.994
folD
Bifunctional methylenetetrahydrofolate dehydrogenase/methenyltetrahydrofolate cyclohydrolase; Catalyzes the oxidation of 5,10-methylenetetrahydrofolate to 5,10-methenyltetrahydrofolate and then the hydrolysis of 5,10- methenyltetrahydrofolate to 10-formyltetrahydrofolate.
  
 
 0.958
LpdA3
Dihydrolipoyl dehydrogenase; Derived by automated computational analysis using gene prediction method: Protein Homology.
 
 0.953
metF
5,10-methylenetetrahydrofolate reductase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the methylenetetrahydrofolate reductase family.
  
 
 0.949
fhs
Formate--tetrahydrofolate ligase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the formate--tetrahydrofolate ligase family.
  
 0.946
LpdA2
Dihydrolipoyl dehydrogenase; Derived by automated computational analysis using gene prediction method: Protein Homology.
  
 0.946
purH
Bifunctional phosphoribosylaminoimidazolecarboxamide formyltransferase/IMP cyclohydrolase; Derived by automated computational analysis using gene prediction method: Protein Homology.
   
 
 0.939
Your Current Organism:
Neisseria lactamica
NCBI taxonomy Id: 486
Other names: ATCC 23970, CCUG 5853, CIP 72.17, DSM 4691, N. lactamica, NCTC 10617, Neisseria lactamicus
Server load: low (20%) [HD]