STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
CDC19Pyruvate kinase; functions as a homotetramer in glycolysis to convert phosphoenolpyruvate to pyruvate, the input for aerobic (TCA cycle) or anaerobic (glucose fermentation) respiration; regulated via allosteric activation by fructose bisphosphate; CDC19 has a paralog, PYK2, that arose from the whole genome duplication. (500 aa)    
Predicted Functional Partners:
PYC2
Pyruvate carboxylase isoform; cytoplasmic enzyme that converts pyruvate to oxaloacetate; differentially regulated than isoform Pyc1p; mutations in the human homolog are associated with lactic acidosis; PYC2 has a paralog, PYC1, that arose from the whole genome duplication.
   
 0.999
PFK1
Alpha subunit of heterooctameric phosphofructokinase; involved in glycolysis, indispensable for anaerobic growth, activated by fructose-2,6-bisphosphate and AMP, mutation inhibits glucose induction of cell cycle-related genes; Belongs to the phosphofructokinase type A (PFKA) family. ATP-dependent PFK group I subfamily. Eukaryotic two domain clade 'E' sub-subfamily.
  
 0.998
ENO2
Enolase II, a phosphopyruvate hydratase; catalyzes conversion of 2-phosphoglycerate to phosphoenolpyruvate during glycolysis and the reverse reaction during gluconeogenesis; expression induced in response to glucose; ENO2 has a paralog, ENO1, that arose from the whole genome duplication.
  
 0.998
PDC1
Major of three pyruvate decarboxylase isozymes; key enzyme in alcoholic fermentation; decarboxylates pyruvate to acetaldehyde; involved in amino acid catabolism; subject to glucose-, ethanol-, and autoregulation; activated by phosphorylation in response to glucose levels; N-terminally propionylated in vivo; Belongs to the TPP enzyme family.
   
 
 0.998
PGI1
Glycolytic enzyme phosphoglucose isomerase; catalyzes the interconversion of glucose-6-phosphate and fructose-6-phosphate; required for cell cycle progression and completion of the gluconeogenic events of sporulation.
  
 
 0.997
PYC1
Pyruvate carboxylase isoform; cytoplasmic enzyme that converts pyruvate to oxaloacetate; differentially regulated than isoform Pyc2p; mutations in the human homolog are associated with lactic acidosis; PYC1 has a paralog, PYC2, that arose from the whole genome duplication.
   
 
 0.997
ENO1
Enolase I, a phosphopyruvate hydratase; catalyzes conversion of 2-phosphoglycerate to phosphoenolpyruvate during glycolysis and the reverse reaction during gluconeogenesis; expression repressed in response to glucose; protein abundance increases in response to DNA replication stress; N-terminally propionylated in vivo; ENO1 has a paralog, ENO2, that arose from the whole genome duplication.
  
 0.997
PCK1
Phosphoenolpyruvate carboxykinase; key enzyme in gluconeogenesis, catalyzes early reaction in carbohydrate biosynthesis, glucose represses transcription and accelerates mRNA degradation, regulated by Mcm1p and Cat8p, located in the cytosol.
     
 0.996
MAE1
Mitochondrial malic enzyme; catalyzes the oxidative decarboxylation of malate to pyruvate, which is a key intermediate in sugar metabolism and a precursor for synthesis of several amino acids.
  
 0.995
FBA1
Fructose 1,6-bisphosphate aldolase; required for glycolysis and gluconeogenesis; catalyzes conversion of fructose 1,6 bisphosphate to glyceraldehyde-3-P and dihydroxyacetone-P; locates to mitochondrial outer surface upon oxidative stress; N-terminally propionylated in vivo; Belongs to the class II fructose-bisphosphate aldolase family.
  
 0.994
Your Current Organism:
Saccharomyces cerevisiae
NCBI taxonomy Id: 4932
Other names: ATCC 18824, Candida robusta, Mycoderma cerevisiae, NRRL Y-12632, S. cerevisiae, Saccharomyces capensis, Saccharomyces italicus, Saccharomyces oviformis, Saccharomyces uvarum var. melibiosus, yeast
Server load: low (16%) [HD]