STRINGSTRING
AIM1 protein (Saccharomyces cerevisiae) - STRING interaction network
"AIM1" - Protein involved in mitochondrial function or organization in Saccharomyces cerevisiae
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
AIM1Protein involved in mitochondrial function or organization; null mutant displays elevated frequency of mitochondrial genome loss (118 aa)    
Predicted Functional Partners:
GRX3
Hydroperoxide and superoxide-radical responsive glutathione-dependent oxidoreductase; monothiol glutaredoxin subfamily member along with Grx4p and Grx5p; protects cells from oxidative damage; Monothiol glutaredoxin involved in the biogenesis of iron-sulfur clusters (By similarity). Binds one iron-sulfur cluster per dimer. The iron-sulfur cluster is bound between subunits, and is complexed by a bound glutathione and a cysteine residue from each subunit (Probable) (285 aa)
   
 
  0.990
GRX4
Hydroperoxide and superoxide-radical responsive glutathione-dependent oxidoreductase; monothiol glutaredoxin subfamily member along with Grx3p and Grx5p; protects cells from oxidative damage; mutant has increased aneuploidy tolerance; Monothiol glutaredoxin involved in the biogenesis of iron-sulfur clusters (By similarity). Binds one iron-sulfur cluster per dimer. The iron-sulfur cluster is bound between subunits, and is complexed by a bound glutathione and a cysteine residue from each subunit (Probable) (244 aa)
   
 
  0.975
GRX5
Hydroperoxide and superoxide-radical responsive glutathione-dependent oxidoreductase; mitochondrial matrix protein involved in the synthesis/assembly of iron-sulfur centers; monothiol glutaredoxin subfamily member along with Grx3p and Grx4p; Monothiol glutaredoxin involved in iron-sulfur biogenesis. Required for normal iron homeostasis. Protects cells against oxidative damage due to reactive oxygen species (150 aa)
   
 
  0.962
YAL044W-A
Putative protein of unknown function; similar to S. pombe uvi31 which is a putative DNA repair protein (110 aa)
     
 
  0.902
MPE1
Essential conserved subunit of CPF (cleavage and polyadenylation factor), plays a role in 3’ end formation of mRNA via the specific cleavage and polyadenylation of pre-mRNA, contains a putative RNA-binding zinc knuckle motif; Component of the cleavage and polyadenylation factor (CPF) complex, which plays a key role in polyadenylation-dependent pre-mRNA 3’-end formation and cooperates with cleavage factors including the CFIA complex and NAB4/CFIB (441 aa)
       
      0.698
YTH1
Essential RNA-binding component of cleavage and polyadenylation factor, contains five zinc fingers; required for pre-mRNA 3’-end processing and polyadenylation; RNA-binding component of the cleavage and polyadenylation factor (CPF) complex, which plays a key role in polyadenylation-dependent pre-mRNA 3’-end formation and cooperates with cleavage factors including the CFIA complex and NAB4/CFIB (208 aa)
       
 
  0.686
PTI1
Essential protein that is a component of CPF (cleavage and polyadenylation factor); involved in 3’ end formation of snoRNA and mRNA; interacts directly with Pta1p; has similarity to mammalian Cleavage-Stimulation Factor CstF-64; Component of the cleavage and polyadenylation factor (CPF) complex, which plays a key role in polyadenylation-dependent pre-mRNA 3’-end formation and cooperates with cleavage factors including the CFIA complex and NAB4/CFIB. Component of the APT complex, which may be involved in polyadenylation-independent transcript 3’-end formation. PTI1 is required for 3’-en [...] (425 aa)
       
 
  0.684
PAP1
Poly(A) polymerase, one of three factors required for mRNA 3’-end polyadenylation, forms multiprotein complex with polyadenylation factor I (PF I), also required for mRNA nuclear export; may also polyadenylate rRNAs; required for gene looping; Polymerase component of the cleavage and polyadenylation factor (CPF) complex, which plays a key role in polyadenylation- dependent pre-mRNA 3’-end formation and cooperates with cleavage factors including the CFIA complex and NAB4/CFIB (568 aa)
       
      0.683
PTA1
Subunit of holo-CPF, a multiprotein complex and functional homolog of mammalian CPSF, required for the cleavage and polyadenylation of mRNA and snoRNA 3’ ends; involved in pre-tRNA processing; binds to the phosphorylated CTD of RNAPII; Essential in pre-tRNA processing. Component of the cleavage and polyadenylation factor (CPF) complex, which plays a key role in polyadenylation-dependent pre-mRNA 3’-end formation and cooperates with cleavage factors including the CFIA complex and NAB4/CFIB. Component of the APT complex, which may be involved in polyadenylation-independent transcript 3’- [...] (785 aa)
     
      0.682
SSU72
Transcription/RNA-processing factor that associates with TFIIB and cleavage/polyadenylation factor Pta1p; exhibits phosphatase activity on serine-5 of the RNA polymerase II C-terminal domain; affects start site selection in vivo; Component of the cleavage and polyadenylation factor (CPF) complex, which plays a key role in polyadenylation-dependent pre-mRNA 3’-end formation and cooperates with cleavage factors including the CFIA complex and NAB4/CFIB. Component of the APT complex, which may be involved in polyadenylation-independent transcript 3’-end formation. SSU72 is required for 3’- [...] (206 aa)
       
      0.682
Your Current Organism:
Saccharomyces cerevisiae
NCBI taxonomy Id: 4932
Other names: Candida robusta, Pachytichospora, S. cerevisiae, Saccharomyces, Saccharomyces capensis, Saccharomyces cerevisiae, Saccharomyces italicus, Saccharomyces oviformis, Saccharomyces uvarum var. melibiosus, lager beer yeast, yeast
Server load: low (8%) [HD]