STRINGSTRING
GDH3 protein (Saccharomyces cerevisiae) - STRING interaction network
"GDH3" - NADP(+)-dependent glutamate dehydrogenase, synthesizes glutamate from ammonia and alpha-ketoglutarate in Saccharomyces cerevisiae
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
GDH3NADP(+)-dependent glutamate dehydrogenase, synthesizes glutamate from ammonia and alpha-ketoglutarate; rate of alpha-ketoglutarate utilization differs from Gdh1p; expression regulated by nitrogen and carbon sources (457 aa)    
Predicted Functional Partners:
GLT1
NAD(+)-dependent glutamate synthase (GOGAT), synthesizes glutamate from glutamine and alpha-ketoglutarate; with Gln1p, forms the secondary pathway for glutamate biosynthesis from ammonia; expression regulated by nitrogen source; Forms L-glutamate from L-glutamine and 2-oxoglutarate. Represents an alternative pathway to L-glutamate dehydrogenase for the biosynthesis of L-glutamate. Participates with glutamine synthetase in ammonia assimilation processes. The enzyme is specific for NADH, L-glutamine and 2-oxoglutarate (2145 aa)
   
  0.999
GLN1
Glutamine synthetase (GS), synthesizes glutamine from glutamate and ammonia; with Glt1p, forms the secondary pathway for glutamate biosynthesis from ammonia; expression regulated by nitrogen source and by amino acid limitation (370 aa)
   
 
  0.991
ALT1
Alanine transaminase (glutamic pyruvic transaminase); involved in alanine biosynthetic and catabolic processes; the authentic, non-tagged protein is detected in highly purified mitochondria in high-throughput studies (592 aa)
   
 
  0.983
ALT2
Putative alanine transaminase (glutamic pyruvic transaminase) (507 aa)
   
 
  0.981
GDH1
NADP(+)-dependent glutamate dehydrogenase, synthesizes glutamate from ammonia and alpha-ketoglutarate; rate of alpha-ketoglutarate utilization differs from Gdh3p; expression regulated by nitrogen and carbon sources (454 aa)
   
 
0.973
IDP2
Cytosolic NADP-specific isocitrate dehydrogenase, catalyzes oxidation of isocitrate to alpha-ketoglutarate; levels are elevated during growth on non-fermentable carbon sources and reduced during growth on glucose; May function in the production of NADPH for fatty acid and sterol synthesis (412 aa)
     
 
  0.969
GAD1
Glutamate decarboxylase, converts glutamate into gamma-aminobutyric acid (GABA) during glutamate catabolism; involved in response to oxidative stress (585 aa)
         
  0.966
GDH2
NAD(+)-dependent glutamate dehydrogenase, degrades glutamate to ammonia and alpha-ketoglutarate; expression sensitive to nitrogen catabolite repression and intracellular ammonia levels; NAD(+)-dependent glutamate dehydrogenase which degrades glutamate to ammonia and alpha-ketoglutarate (1092 aa)
   
  0.965
IDP1
Mitochondrial NADP-specific isocitrate dehydrogenase, catalyzes the oxidation of isocitrate to alpha-ketoglutarate; not required for mitochondrial respiration and may function to divert alpha-ketoglutarate to biosynthetic processes; Mitochondrial IDP1 may regulate flux through the tricarboxylic acid cycle and respiration. Its probably critical function is the production of NADPH (428 aa)
     
 
  0.963
AAT1
Mitochondrial aspartate aminotransferase, catalyzes the conversion of oxaloacetate to aspartate in aspartate and asparagine biosynthesis; Plays a key role in amino acid metabolism. Important for metabolite exchange between mitochondria and cytosol (By similarity) (451 aa)
     
  0.959
Your Current Organism:
Saccharomyces cerevisiae
NCBI taxonomy Id: 4932
Other names: Candida robusta, Pachytichospora, S. cerevisiae, Saccharomyces, Saccharomyces capensis, Saccharomyces cerevisiae, Saccharomyces italicus, Saccharomyces oviformis, Saccharomyces uvarum var. melibiosus, lager beer yeast, yeast
Server load: low (7%) [HD]