STRINGSTRING
SEN34 protein (Saccharomyces cerevisiae) - STRING interaction network
"SEN34" - Subunit of the tRNA splicing endonuclease, which is composed of Sen2p, Sen15p, Sen34p, and Sen54p in Saccharomyces cerevisiae
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
SEN34Subunit of the tRNA splicing endonuclease, which is composed of Sen2p, Sen15p, Sen34p, and Sen54p; Sen34p contains the active site for tRNA 3’ splice site cleavage and has similarity to Sen2p and to Archaeal tRNA splicing endonuclease; Constitutes one of the two catalytic subunit of the tRNA-splicing endonuclease complex, a complex responsible for identification and cleavage of the splice sites in pre-tRNA. It cleaves pre-tRNA at the 5’- and 3’-splice sites to release the intron. The products are an intron and two tRNA half-molecules bearing 2’,3’-cyclic phosphate and 5’-OH termini. Th [...] (275 aa)    
Predicted Functional Partners:
SEN54
Subunit of the tRNA splicing endonuclease, which is composed of Sen2p, Sen15p, Sen34p, and Sen54p; Non-catalytic subunit of the tRNA-splicing endonuclease complex, a complex responsible for identification and cleavage of the splice sites in pre-tRNA. It cleaves pre-tRNA at the 5’ and 3’ splice sites to release the intron. The products are an intron and two tRNA half-molecules bearing 2’,3’ cyclic phosphate and 5’-OH termini. There are no conserved sequences at the splice sites, but the intron is invariably located at the same site in the gene, placing the splice sites an invariant dist [...] (467 aa)
     
  0.998
SEN2
Subunit of the tRNA splicing endonuclease, which is composed of Sen2p, Sen15p, Sen34p, and Sen54p; Sen2p contains the active site for tRNA 5’ splice site cleavage and has similarity to Sen34p and to Archaeal tRNA splicing endonuclease; Constitutes one of the two catalytic subunit of the tRNA-splicing endonuclease complex, a complex responsible for identification and cleavage of the splice sites in pre-tRNA. It cleaves pre-tRNA at the 5’- and 3’-splice sites to release the intron. The products are an intron and two tRNA half-molecules bearing 2’,3’-cyclic phosphate and 5’-OH termini. Th [...] (377 aa)
       
  0.998
SEN15
Subunit of the tRNA splicing endonuclease, which is composed of Sen2p, Sen15p, Sen34p, and Sen54p; Non-catalytic subunit of the tRNA-splicing endonuclease complex, a complex responsible for identification and cleavage of the splice sites in pre-tRNA. It cleaves pre-tRNA at the 5’ and 3’ splice sites to release the intron. The products are an intron and two tRNA half-molecules bearing 2’,3’ cyclic phosphate and 5’-OH termini. There are no conserved sequences at the splice sites, but the intron is invariably located at the same site in the gene, placing the splice sites an invariant dist [...] (128 aa)
       
  0.998
TRL1
tRNA ligase, required for tRNA splicing and for both splicing and translation of HAC1 mRNA in the UPR; has phosphodiesterase, polynucleotide kinase, and ligase activities; localized at the inner nuclear envelope and partially to polysomes; One of the two proteins required for the splicing of precursor tRNA molecules containing introns. The ligation activity requires three enzymatic activities- phosphorylation of the 5’ terminus of the 3’ half-tRNA in the presence of ATP, opening of the 2’3’-cyclic phosphodiester bond of the 5’ half-tRNA leaving a 2’-phosphomonoester and ligation of the [...] (827 aa)
     
   
  0.835
SLX1
Subunit of a complex, with Slx4p, that hydrolyzes 5’ branches from duplex DNA in response to stalled or converging replication forks; function overlaps with that of Sgs1p-Top3p; Catalytic subunit of the SLX1-SLX4 structure-specific endonuclease that resolves DNA secondary structures generated during DNA repair and recombination. Has endonuclease activity towards branched DNA substrates, introducing single-strand cuts in duplex DNA close to junctions with ss-DNA. Has a preference for simple Y, 5’-flap and replication fork-like structures. It cleaves the strand bearing the 5’-non-homolog [...] (304 aa)
           
  0.810
TRZ1
tRNA 3’-end processing endonuclease tRNase Z; also localized to mitochondria and interacts genetically with Rex2 exonuclease; homolog of the human candidate prostate cancer susceptibility gene ELAC2; Zinc phosphodiesterase, which displays some tRNA 3’- processing endonuclease activity. Probably involved in tRNA maturation, by removing a 3’-trailer from precursor tRNA (838 aa)
     
   
  0.624
LOS1
Nuclear pore protein involved in nuclear export of pre-tRNA and in re-export of mature tRNAs after their retrograde import from the cytoplasm; tRNA nucleus export receptor which facilitates tRNA translocation across the nuclear pore complex. Preferentially interacts with tRNAs with mature 5’- and 3’-termini and does not distinguish between intron-containing and spliced tRNAs. In the nucleus binds to tRNA and to the Ran-GTPases GSP1 or GSP2 in their active GTP-bound form. Docking of this trimeric complex to the nuclear pore complex (NPC) is mediated through binding to nucleoporins. Upon [...] (1100 aa)
           
  0.574
MSF1
Mitochondrial phenylalanyl-tRNA synthetase, active as a monomer, unlike the cytoplasmic subunit which is active as a dimer complexed to a beta subunit dimer; similar to the alpha subunit of E. coli phenylalanyl-tRNA synthetase; Is responsible for the charging of tRNA(Phe) with phenylalanine in mitochondrial translation (469 aa)
   
   
  0.567
PUS1
tRNA-pseudouridine synthase, introduces pseudouridines at positions 26-28, 34-36, 65, and 67 of tRNA; nuclear protein that appears to be involved in tRNA export; also acts on U2 snRNA; Formation of pseudouridine at positions 27 and 28 in the anticodon stem and loop of transfer RNAs; at positions 34 and 36 of intron-containing precursor tRNA(Ile) and at position 35 in the intron-containing tRNA(Tyr) (544 aa)
     
   
  0.513
TRM5
tRNA(m(1)G37)methyltransferase, methylates a tRNA base adjacent to the anticodon that has a role in prevention of frameshifting; highly conserved across Archaea, Bacteria, and Eukarya; Specifically methylates the N1 position of guanosine-37 in various cytoplasmic and mitochondrial tRNAs. Methylation is not dependent on the nature of the nucleoside 5’ of the target nucleoside. This is the first step in the biosynthesis of wybutosine (yW), a modified base adjacent to the anticodon of tRNAs and required for accurate decoding. Postspliced cytoplasmic tRNAs are imported into the nucleus, wh [...] (499 aa)
     
   
  0.512
Your Current Organism:
Saccharomyces cerevisiae
NCBI taxonomy Id: 4932
Other names: Candida robusta, Pachytichospora, S. cerevisiae, Saccharomyces, Saccharomyces capensis, Saccharomyces cerevisiae, Saccharomyces italicus, Saccharomyces oviformis, Saccharomyces uvarum var. melibiosus, lager beer yeast, yeast
Server load: low (10%) [HD]