STRINGSTRING
BNA4 protein (Saccharomyces cerevisiae) - STRING interaction network
"BNA4" - Kynurenine 3-monooxygenase in Saccharomyces cerevisiae
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
BNA4Kynurenine 3-monooxygenase; required for the de novo biosynthesis of NAD from tryptophan via kynurenine; expression regulated by Hst1p; putative therapeutic target for Huntington disease; Catalyzes the hydroxylation of L-kynurenine (L-Kyn) to form 3-hydroxy-L-kynurenine (L-3OHKyn). Required for synthesis of quinolinic acid (460 aa)    
Predicted Functional Partners:
BNA5
Kynureninase, required for the de novo biosynthesis of NAD from tryptophan via kynurenine; expression regulated by Hst1p; Catalyzes the cleavage of L-kynurenine (L-Kyn) and L-3- hydroxykynurenine (L-3OHKyn) into anthranilic acid (AA) and 3- hydroxyanthranilic acid (3-OHAA), respectively (453 aa)
 
 
  0.996
BNA3
Kynurenine aminotransferase, catalyzes formation of kynurenic acid from kynurenine; potential Cdc28p substrate; Catalyzes the irreversible transamination of the L- tryptophan metabolite L-kynurenine to form kynurenic acid (KA) (444 aa)
     
 
  0.989
BNA1
3-hydroxyanthranilic acid dioxygenase, required for the de novo biosynthesis of NAD from tryptophan via kynurenine; expression regulated by Hst1p; Catalyzes the oxidative ring opening of 3- hydroxyanthranilate to 2-amino-3-carboxymuconate semialdehyde, which spontaneously cyclizes to quinolinate (177 aa)
 
   
  0.977
BNA7
Formylkynurenine formamidase, involved in the de novo biosynthesis of NAD from tryptophan via kynurenine; Catalyzes the hydrolysis of N-formyl-L-kynurenine to L- kynurenine, the second step in the kynurenine pathway of tryptophan degradation. Kynurenine may be further oxidized to nicotinic acid, NAD(H) and NADP(H). Required for elimination of toxic metabolites (261 aa)
       
  0.963
EGH1
Putative protein of unknown function; green fluorescent protein (GFP)-fusion protein localizes to the cytoplasm; YIR007W is a non-essential gene (764 aa)
           
  0.908
COQ3
O-methyltransferase, catalyzes two different O-methylation steps in ubiquinone (Coenzyme Q) biosynthesis; component of a mitochondrial ubiquinone-synthesizing complex; phosphoprotein; O-methyltransferase that catalyzes the 2 O-methylation steps in the ubiquinone biosynthetic pathway. Catalyzes the methylation of 3,4-dihydroxy-5-hexaprenylbenzoate (DHHB) to 3- methoxy-4-hydroxy-5-hexaprenylbenzoate (HMHB) and the methylation of 2-hexaprenyl-3-methyl-5-hydroxy-6-methoxy-1,4-benzoquinol (3- demethylubiquinol-6) to ubiquinol-6 (312 aa)
   
  0.842
NPT1
Nicotinate phosphoribosyltransferase, acts in the salvage pathway of NAD+ biosynthesis; required for silencing at rDNA and telomeres and has a role in silencing at mating-type loci; localized to the nucleus; Essential for growth under anaerobic conditions (429 aa)
       
 
  0.771
YNL092W
Putative S-adenosylmethionine-dependent methyltransferase of the seven beta-strand family; YNL092W is not an essential gene; N-methyltransferase that mediates the formation of anserine (beta-alanyl-N(Pi)-methyl-L-histidine) from carnosine. Also methylates other L-histidine-containing di- and tripeptides such as Gly-Gly-His, Gly-His and homocarnosine (GABA-His) (400 aa)
       
      0.758
YMR209C
Putative S-adenosylmethionine-dependent methyltransferase; YMR209C is not an essential gene (457 aa)
       
      0.749
ALD6
Cytosolic aldehyde dehydrogenase, activated by Mg2+ and utilizes NADP+ as the preferred coenzyme; required for conversion of acetaldehyde to acetate; constitutively expressed; locates to the mitochondrial outer surface upon oxidative stress; Cytosolic aldehyde dehydrogenase which utilizes NADP+ as the preferred coenzyme. Performs the conversion of acetaldehyde to acetate (500 aa)
   
 
  0.735
Your Current Organism:
Saccharomyces cerevisiae
NCBI taxonomy Id: 4932
Other names: Candida robusta, Pachytichospora, S. cerevisiae, Saccharomyces, Saccharomyces capensis, Saccharomyces cerevisiae, Saccharomyces italicus, Saccharomyces oviformis, Saccharomyces uvarum var. melibiosus, lager beer yeast, yeast
Server load: low (10%) [HD]