STRINGSTRING
ADH5 protein (Saccharomyces cerevisiae) - STRING interaction network
"ADH5" - Alcohol dehydrogenase isoenzyme V in Saccharomyces cerevisiae
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
ADH5Alcohol dehydrogenase isoenzyme V; involved in ethanol production (351 aa)    
Predicted Functional Partners:
ADH3
Mitochondrial alcohol dehydrogenase isozyme III; involved in the shuttling of mitochondrial NADH to the cytosol under anaerobic conditions and ethanol production (375 aa)
   
0.987
ADH2
Glucose-repressible alcohol dehydrogenase II, catalyzes the conversion of ethanol to acetaldehyde; involved in the production of certain carboxylate esters; regulated by ADR1; This isozyme preferentially catalyzes the conversion of ethanol to acetaldehyde. Acts on a variety of primary unbranched aliphatic alcohols (348 aa)
   
 
0.986
ADH1
Alcohol dehydrogenase, fermentative isozyme active as homo- or heterotetramers; required for the reduction of acetaldehyde to ethanol, the last step in the glycolytic pathway; This isozyme preferentially catalyzes the conversion of primary unbranched alcohols to their corresponding aldehydes. Also also shows activity toward secondary alcohols (348 aa)
   
 
0.986
ADH4
Alcohol dehydrogenase isoenzyme type IV, dimeric enzyme demonstrated to be zinc-dependent despite sequence similarity to iron-activated alcohol dehydrogenases; transcription is induced in response to zinc deficiency; Reduces acetaldehyde to ethanol during glucose fermentation. Specific for ethanol. Shows drastically reduced activity towards primary alcohols from 4 carbon atoms upward. Isomers of aliphatic alcohol, as well as secondary alcohols and glycerol are not used at all (382 aa)
   
  0.985
ALD2
Cytoplasmic aldehyde dehydrogenase, involved in ethanol oxidation and beta-alanine biosynthesis; uses NAD+ as the preferred coenzyme; expression is stress induced and glucose repressed; very similar to Ald3p; Cytoplasmic aldehyde dehydrogenase involved in ethanol oxidation. Required for pantothenic acid production through the conversion of 3-aminopropanal to beta-alanine, an intermediate in pantothenic acid (vitamin B5) and coenzyme A (CoA) biosynthesis (506 aa)
   
 
  0.977
ALD3
Cytoplasmic aldehyde dehydrogenase, involved in beta-alanine synthesis; uses NAD+ as the preferred coenzyme; very similar to Ald2p; expression is induced by stress and repressed by glucose; Cytoplasmic aldehyde dehydrogenase involved in ethanol oxidation. Involved in pantothenic acid production through the conversion of 3-aminopropanal to beta-alanine, an intermediate in pantothenic acid (vitamin B5) and coenzyme A (CoA) biosynthesis (506 aa)
   
 
  0.976
ALD5
Mitochondrial aldehyde dehydrogenase, involved in regulation or biosynthesis of electron transport chain components and acetate formation; activated by K+; utilizes NADP+ as the preferred coenzyme; constitutively expressed; Minor mitochondrial aldehyde dehydrogenase isoform. Plays a role in regulation or biosynthesis of electron transport chain components. Involved in the biosynthesis of acetate during anaerobic growth on glucose (520 aa)
   
 
  0.973
ALD6
Cytosolic aldehyde dehydrogenase, activated by Mg2+ and utilizes NADP+ as the preferred coenzyme; required for conversion of acetaldehyde to acetate; constitutively expressed; locates to the mitochondrial outer surface upon oxidative stress; Cytosolic aldehyde dehydrogenase which utilizes NADP+ as the preferred coenzyme. Performs the conversion of acetaldehyde to acetate (500 aa)
   
 
  0.972
ALD4
Mitochondrial aldehyde dehydrogenase, required for growth on ethanol and conversion of acetaldehyde to acetate; phosphorylated; activity is K+ dependent; utilizes NADP+ or NAD+ equally as coenzymes; expression is glucose repressed; Potassium-activated aldehyde dehydrogenase involved in acetate formation during anaerobic growth on glucose (519 aa)
   
 
  0.972
HFD1
Putative fatty aldehyde dehydrogenase, located in the mitochondrial outer membrane and also in lipid particles; has similarity to human fatty aldehyde dehydrogenase (FALDH) which is implicated in Sjogren-Larsson syndrome; Catalyzes the oxidation of long-chain aliphatic aldehydes to fatty acids. Responsible for conversion of the sphingosine 1-phosphate (S1P) degradation product hexadecenal to hexadecenoic acid (532 aa)
   
 
  0.972
Your Current Organism:
Saccharomyces cerevisiae
NCBI taxonomy Id: 4932
Other names: Candida robusta, Pachytichospora, S. cerevisiae, Saccharomyces, Saccharomyces capensis, Saccharomyces cerevisiae, Saccharomyces italicus, Saccharomyces oviformis, Saccharomyces uvarum var. melibiosus, lager beer yeast, yeast
Server load: low (9%) [HD]