STRINGSTRING
CSH1 protein (Saccharomyces cerevisiae) - STRING interaction network
"CSH1" - Probable catalytic subunit of a mannosylinositol phosphorylceramide in Saccharomyces cerevisiae
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
CSH1Probable catalytic subunit of a mannosylinositol phosphorylceramide (MIPC) synthase, forms a complex with probable regulatory subunit Csg2p; function in sphingolipid biosynthesis is overlapping with that of Sur1p; Involved in the synthesis of mannosyl phosphorylinositol ceramide. Catalyzes the addition of mannosyl to phosphorylinositol ceramide (376 aa)    
Predicted Functional Partners:
SUR1
Probable catalytic subunit of a mannosylinositol phosphorylceramide (MIPC) synthase, forms a complex with probable regulatory subunit Csg2p; function in sphingolipid biosynthesis is overlapping with that of Csh1p; Involved in the synthesis of mannosyl phosphorylinositol ceramide. Catalyzes the addition of mannosyl to phosphorylinositol ceramide. Suppressor of RVS161 mutation (382 aa)
   
 
 
0.873
SCS7
Sphingolipid alpha-hydroxylase, functions in the alpha-hydroxylation of sphingolipid-associated very long chain fatty acids, has both cytochrome b5-like and hydroxylase/desaturase domains, not essential for growth; Ceramide hydroxylase involved in the alpha-hydroxylation of sphingolipid-associated very long chain fatty acids. Hydroxylates the very long chain fatty acid of ceramides at C2 and C3 (384 aa)
       
 
  0.856
CSG2
Endoplasmic reticulum membrane protein, required for mannosylation of inositolphosphorylceramide and for growth at high calcium concentrations; Required for calcium regulation. May regulate calcium accumulation by a non-vacuole organelle. Also regulates the activity of CSH1 and SUR1 during mannosyl phosphorylinositol ceramide synthesis (410 aa)
       
 
  0.850
SUR2
Sphinganine C4-hydroxylase, catalyses the conversion of sphinganine to phytosphingosine in sphingolipid biosyntheis; Required for hydroxylation of C-4 in the sphingoid moiety of ceramide. Involved in the response to syringomycin (349 aa)
       
 
  0.847
NPL6
Component of the RSC chromatin remodeling complex; interacts with Rsc3p, Rsc30p, Ldb7p, and Htl1p to form a module important for a broad range of RSC functions; Component of the chromatin structure remodeling complex (RSC), which is involved in transcription regulation and nucleosome positioning. RSC is responsible for the transfer of a histone octamer from a nucleosome core particle to naked DNA. The reaction requires ATP and involves an activated RSC-nucleosome intermediate. Remodeling reaction also involves DNA translocation, DNA twist and conformational change. As a reconfigurer of [...] (435 aa)
       
      0.673
VMA2
Subunit B of the eight-subunit V1 peripheral membrane domain of the vacuolar H+-ATPase (V-ATPase), an electrogenic proton pump found throughout the endomembrane system; contains nucleotide binding sites; also detected in the cytoplasm; Non-catalytic subunit of the peripheral V1 complex of vacuolar ATPase. V-ATPase is responsible for acidifying a variety of intracellular compartments in eukaryotic cells. It is an electrogenic proton pump that generates a proton motive force of 180 mv, inside positive and acidic, in the vacuolar membrane vesicles (517 aa)
       
      0.654
IPT1
Inositolphosphotransferase; involved in synthesis of mannose-(inositol-P)2-ceramide (M(IP)2C), the most abundant sphingolipid; can mutate to resistance to the antifungals syringomycin E and DmAMP1 and to K. lactis zymocin; Catalyzes the addition of a phosphorylinositol group onto mannosyl phosphorylinositol ceramide to form mannosyl diphosphorylinositol ceramide (527 aa)
       
 
  0.633
HOR7
Protein of unknown function; overexpression suppresses Ca2+ sensitivity of mutants lacking inositol phosphorylceramide mannosyltransferases Csg1p and Csh1p; transcription is induced under hyperosmotic stress and repressed by alpha factor (59 aa)
       
 
  0.624
AUR1
Phosphatidylinositol-ceramide phosphoinositol transferase (IPC synthase), required for sphingolipid synthesis; can mutate to confer aureobasidin A resistance; Catalytic component of the inositol phosphorylceramide synthase which catalyzes the addition of a phosphorylinositol group onto ceramide to form inositol phosphorylceramide, an essential step in sphingolipid biosynthesis (401 aa)
     
   
  0.578
MNN2
Alpha-1,2-mannosyltransferase, responsible for addition of the first alpha-1,2-linked mannose to form the branches on the mannan backbone of oligosaccharides, localizes to an early Golgi compartment; Alpha-1,2-mannosyltransferase, responsible for addition of the first alpha-1,2-linked mannose to form the branches on the mannan backbone of oligosaccharides (597 aa)
     
 
  0.563
Your Current Organism:
Saccharomyces cerevisiae
NCBI taxonomy Id: 4932
Other names: Candida robusta, Pachytichospora, S. cerevisiae, Saccharomyces, Saccharomyces capensis, Saccharomyces cerevisiae, Saccharomyces italicus, Saccharomyces oviformis, Saccharomyces uvarum var. melibiosus, lager beer yeast, yeast
Server load: low (8%) [HD]