EHT1 protein (Saccharomyces cerevisiae) - STRING interaction network
"EHT1" - Acyl-coenzymeA:ethanol O-acyltransferase that plays a minor role in medium-chain fatty acid ethyl ester biosynthesis in Saccharomyces cerevisiae
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
protein homology
Your Input:
Gene Fusion
EHT1Acyl-coenzymeA-ethanol O-acyltransferase that plays a minor role in medium-chain fatty acid ethyl ester biosynthesis; possesses short-chain esterase activity; localizes to lipid particles and the mitochondrial outer membrane; Displays enzymatic activity both for medium-chain fatty acid (MCFA) ethyl ester synthesis and hydrolysis (esterase activity). MCFA are toxic for yeast and this enzyme could thus be involved in their detoxification by esterification (451 aa)    
Predicted Functional Partners:
Isoamyl acetate-hydrolyzing esterase, required in balance with alcohol acetyltransferase to maintain optimal amounts of isoamyl acetate, which is particularly important in sake brewing; Plays a crucial role in the hydrolysis of isoamyl acetate in sake mash (238 aa)
One of two type I myosins; contains proline-rich tail homology 2 (TH2) and SH3 domains; MYO5 deletion has little effect on growth, but myo3 myo5 double deletion causes severe defects in growth and actin cytoskeleton organization; One of two redundant type-I myosins implicated in the organization of the actin cytoskeleton. Required for proper actin cytoskeleton polarization and for the internalization step in endocytosis. At the cell cortex, assembles in patch-like structures together with proteins from the actin-polymerizing machinery and promotes actin assembly. Functions redundantly [...] (1219 aa)
Long chain fatty acyl-CoA synthetase, activates imported fatty acids with a preference for C12-0-C16-0 chain lengths; functions in long chain fatty acid import; accounts for most acyl-CoA synthetase activity; localized to lipid particles; Esterification, concomitant with transport, of exogenous long-chain fatty acids into metabolically active CoA thioesters for subsequent degradation or incorporation into phospholipids. It may supplement intracellular myristoyl-CoA pools from exogenous myristate. Preferentially acts on C12-0-C16-0 fatty acids with myristic and pentadecanic acid (C15-0) [...] (700 aa)
Monoglyceride lipase (MGL), functional ortholog of mammalian MGL, localizes to lipid particles and membranes, also member of the eukaryotic serine hydrolase family; Converts monoacylglycerides (MAG) to free fatty acids and glycerol. Required for efficient degradation of MAG, short- lived intermediates of glycerolipid metabolism which may also function as lipid signaling molecules. Controls inactivation of the signaling lipid N-palmitoylethanolamine (PEA) (313 aa)
Calmodulin; Ca++ binding protein that regulates Ca++ independent processes (mitosis, bud growth, actin organization, endocytosis, etc.) and Ca++ dependent processes (stress-activated pathways), targets include Nuf1p, Myo2p and calcineurin; Calmodulin mediates the control of a large number of enzymes, ion channels and other proteins by Ca(2+). Among the enzymes to be stimulated by the calmodulin-Ca(2+) complex are a number of protein kinases and phosphatases. Component of the spindle pole body (SPB) required for the proper execution of spindle pole body (SPB) duplication (147 aa)
NADPH-dependent 1-acyl dihydroxyacetone phosphate reductase found in lipid particles, ER, and mitochondrial outer membrane; involved in phosphatidic acid biosynthesis; required for spore germination; capable of metabolizing steroid hormones; Can convert acyl and alkyl dihydroxyacetone-phosphate (DHAP) into glycerolipids and ether lipids, respectively. Required for the biosynthesis of phosphatidic acid via the DHAP pathway, where it reduces 1-acyl DHAP to lysophosphatidic acid (LPA). Required for spore germination (297 aa)
Putative protein of unknown function; green fluorescent protein (GFP)-fusion protein localizes to the cytoplasm and is induced in response to the DNA-damaging agent MMS (304 aa)
Bifunctional enzyme with triacylglycerol lipase and lysophosphatidylethanolamine acyltransferase activity; responsible for all the triacylglycerol lipase activity of the lipid particle; required with Tgl4p for timely bud formation; Releases specific fatty acids from neutral lipid triacylglycerols (TAG) thereby supplying fatty acids to a general acylation process (642 aa)
Steryl ester hydrolase, one of three gene products (Yeh1p, Yeh2p, Tgl1p) responsible for steryl ester hydrolase activity and involved in sterol homeostasis; localized to lipid particle membranes; Mediates the hydrolysis of steryl esters. Required for mobilization of steryl ester, thereby playing a central role in lipid metabolism. May have weak lipase activity toward triglycerides upon some conditions, however, the relevance of such activity is unclear in vivo (548 aa)
Lipid particle protein of unknown function; contains a putative lipase serine active site; induced by transcription factor RPN4 (450 aa)
Your Current Organism:
Saccharomyces cerevisiae
NCBI taxonomy Id: 4932
Other names: Candida robusta, Pachytichospora, S. cerevisiae, Saccharomyces, Saccharomyces capensis, Saccharomyces cerevisiae, Saccharomyces italicus, Saccharomyces oviformis, Saccharomyces uvarum var. melibiosus, lager beer yeast, yeast
Server load: low (4%) [HD]