STRINGSTRING
DUR1,2 protein (Saccharomyces cerevisiae) - STRING interaction network
"DUR1,2" - Urea amidolyase, contains both urea carboxylase and allophanate hydrolase activities, degrades urea to CO2 and NH3 in Saccharomyces cerevisiae
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
DUR1,2Urea amidolyase, contains both urea carboxylase and allophanate hydrolase activities, degrades urea to CO2 and NH3; expression sensitive to nitrogen catabolite repression and induced by allophanate, an intermediate in allantoin degradation; Hydrolysis of urea to ammonia and CO(2) (1835 aa)    
Predicted Functional Partners:
ACC1
Acetyl-CoA carboxylase, biotin containing enzyme that catalyzes the carboxylation of acetyl-CoA to form malonyl-CoA; required for de novo biosynthesis of long-chain fatty acids; Carries out three functions- biotin carboxyl carrier protein, biotin carboxylase and carboxyltransferase. Involved in the synthesis of very-long-chain fatty acid synthesis which is required to maintain a functional nuclear envelope. Required for acylation and vacuolar membrane association of VAC8 which is necessary to maintain a normal morphology of the vacuole (2233 aa)
   
0.999
HFA1
Mitochondrial acetyl-coenzyme A carboxylase, catalyzes the production of malonyl-CoA in mitochondrial fatty acid biosynthesis; Catalyzes the rate-limiting reaction in the mitochondrial fatty acid synthesis (FAS) type II pathway. Responsible for the production of the mitochondrial malonyl-CoA, used for the biosynthesis of the cofactor lipoic acid. This protein carries three functions- biotin carboxyl carrier protein, biotin carboxylase, and carboxyltransferase (2123 aa)
   
0.999
CAR1
Arginase, responsible for arginine degradation, expression responds to both induction by arginine and nitrogen catabolite repression; disruption enhances freeze tolerance (333 aa)
   
 
  0.998
FAS2
Alpha subunit of fatty acid synthetase, which catalyzes the synthesis of long-chain saturated fatty acids; contains the acyl-carrier protein domain and beta-ketoacyl reductase, beta-ketoacyl synthase and self-pantetheinylation activities; Fatty acid synthetase catalyzes the formation of long- chain fatty acids from acetyl-CoA, malonyl-CoA and NADPH. The alpha subunit contains domains for- acyl carrier protein, 3- oxoacyl-[acyl-carrier-protein] reductase, and 3-oxoacyl-[acyl- carrier-protein] synthase. This subunit coordinates the binding of the six beta subunits to the enzyme complex (1887 aa)
   
 
  0.997
FAS1
Beta subunit of fatty acid synthetase, which catalyzes the synthesis of long-chain saturated fatty acids; contains acetyltransacylase, dehydratase, enoyl reductase, malonyl transacylase, and palmitoyl transacylase activities; Fatty acid synthetase catalyzes the formation of long- chain fatty acids from acetyl-CoA, malonyl-CoA and NADPH. The beta subunit contains domains for- [acyl-carrier-protein] acetyltransferase and malonyltransferase, S-acyl fatty acid synthase thioesterase, enoyl-[acyl-carrier-protein] reductase, and 3-hydroxypalmitoyl-[acyl-carrier-protein] dehydratase (2051 aa)
   
 
  0.997
BPL1
Biotin-apoprotein ligase, covalently modifies proteins with the addition of biotin, required for acetyl-CoA carboxylase (Acc1p) holoenzyme formation; Post-translational modification of specific protein by attachment of biotin. Acts on various carboxylases such as acetyl- CoA-carboxylase, pyruvate carboxylase, propionyl CoA carboxylase, and 3-methylcrotonyl CoA carboxylase (690 aa)
   
 
  0.997
DAL3
Ureidoglycolate hydrolase, converts ureidoglycolate to glyoxylate and urea in the third step of allantoin degradation; expression sensitive to nitrogen catabolite repression; Catalyzes the catabolism of the allantoin degradation intermediate (S)-ureidoglycolate, generating urea and glyoxylate. Involved in the utilization of allantoin as secondary nitrogen source when primary sources are limiting (195 aa)
     
 
  0.996
PET112
Subunit of the trimeric GatFAB AmidoTransferase(AdT) complex; involved in the formation of Q-tRNAQ; mutation is functionally complemented by the bacterial GatB ortholog; Allows the formation of correctly charged Gln-tRNA(Gln) through the transamidation of misacylated Glu-tRNA(Gln) in the mitochondria. The reaction takes place in the presence of glutamine and ATP through an activated gamma-phospho-Glu- tRNA(Gln) (541 aa)
   
  0.993
MCT1
Predicted malonyl-CoA-ACP transferase, putative component of a type-II mitochondrial fatty acid synthase that produces intermediates for phospholipid remodeling; Involved in biosynthesis of fatty acids in mitochondria (360 aa)
   
 
  0.976
CEM1
Mitochondrial beta-keto-acyl synthase with possible role in fatty acid synthesis; required for mitochondrial respiration; Possibly involved in the synthesis of a specialized molecule, probably related to a fatty acid, which is essential for mitochondrial respiration. Is essential for oxygen uptake and the presence of cytochromes A and B (442 aa)
   
 
  0.972
Your Current Organism:
Saccharomyces cerevisiae
NCBI taxonomy Id: 4932
Other names: Candida robusta, Pachytichospora, S. cerevisiae, Saccharomyces, Saccharomyces capensis, Saccharomyces cerevisiae, Saccharomyces italicus, Saccharomyces oviformis, Saccharomyces uvarum var. melibiosus, lager beer yeast, yeast
Server load: low (4%) [HD]