STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
DUR1,2Allophanate hydrolase; Urea amidolyase; contains both urea carboxylase and allophanate hydrolase activities, degrades urea to CO2 and NH3; expression sensitive to nitrogen catabolite repression and induced by allophanate, an intermediate in allantoin degradation; protein abundance increases in response to DNA replication stress. (1835 aa)    
Predicted Functional Partners:
CAR1
Arginase, catabolizes arginine to ornithine and urea; expression responds to both induction by arginine and nitrogen catabolite repression; disruption decreases production of carcinogen ethyl carbamate during wine fermentation and also enhances freeze tolerance.
  
 
 0.993
PET112
Glutamyl-tRNA(Gln) amidotransferase subunit B, mitochondrial; Subunit of the trimeric GatFAB AmidoTransferase(AdT) complex; involved in the formation of Q-tRNAQ; mutation is functionally complemented by the bacterial GatB ortholog; Belongs to the GatB/GatE family. GatB subfamily.
  
 0.991
DAL2
Allantoicase; converts allantoate to urea and ureidoglycolate in the second step of allantoin degradation; expression sensitive to nitrogen catabolite repression and induced by allophanate, an intermediate in allantoin degradation.
   
  
 0.983
DAL3
Ureidoglycolate lyase; converts ureidoglycolate to glyoxylate and urea in the third step of allantoin degradation; expression is sensitive to nitrogen catabolite repression; this enzyme is sometimes referred to "ureidoglycolate hydrolase" but should not be confused with the Arabidopsis thaliana ureidoglycolate hydrolase enzyme which converts ureidoglycolate to glyoxylate, ammonia and carbon dioxide.
   
 
 0.982
DAL1
Allantoinase; converts allantoin to allantoate in the first step of allantoin degradation; expression sensitive to nitrogen catabolite repression; Belongs to the metallo-dependent hydrolases superfamily. Allantoinase family.
  
 
 0.975
DAL81
Transcriptional activator protein DAL81; Positive regulator of genes in multiple nitrogen degradation pathways; contains DNA binding domain but does not appear to bind the dodecanucleotide sequence present in the promoter region of many genes involved in allantoin catabolism.
  
 
 0.965
DAL82
Protein DAL82; Positive regulator of allophanate inducible genes; binds a dodecanucleotide sequence upstream of all genes that are induced by allophanate; contains an UISALL DNA-binding, a transcriptional activation, and a coiled-coil domain.
      
 0.956
DUR3
Plasma membrane transporter for both urea and polyamines; expression is highly sensitive to nitrogen catabolite repression and induced by allophanate, the last intermediate of the allantoin degradative pathway; Belongs to the sodium:solute symporter (SSF) (TC 2.A.21) family.
  
  
 0.953
ACC1
Acetyl-CoA carboxylase, biotin containing enzyme; catalyzes carboxylation of cytosolic acetyl-CoA to form malonyl-CoA and regulates histone acetylation by regulating the availablity of acetyl-CoA; required for de novo biosynthesis of long-chain fatty acids; ACC1 has a paralog, HFA1, that arose from the whole genome duplication.
  
0.952
GLN1
Glutamine synthetase (GS); synthesizes glutamine from glutamate and ammonia; with Glt1p, forms the secondary pathway for glutamate biosynthesis from ammonia; expression regulated by nitrogen source and by amino acid limitation; forms filaments of back-to-back stacks of cylindrical homo-decamers at low pH, leading to enzymatic inactivation and storage during states of advanced cellular starvation; relocalizes from nucleus to cytoplasmic foci upon DNA replication stress.
  
 
 0.952
Your Current Organism:
Saccharomyces cerevisiae
NCBI taxonomy Id: 4932
Other names: ATCC 18824, Candida robusta, Mycoderma cerevisiae, NRRL Y-12632, S. cerevisiae, Saccharomyces capensis, Saccharomyces italicus, Saccharomyces oviformis, Saccharomyces uvarum var. melibiosus, yeast
Server load: low (38%) [HD]