STRINGSTRING
SUL1 protein (Saccharomyces cerevisiae) - STRING interaction network
"SUL1" - High affinity sulfate permease of the SulP anion transporter family in Saccharomyces cerevisiae
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
SUL1High affinity sulfate permease of the SulP anion transporter family; sulfate uptake is mediated by specific sulfate transporters Sul1p and Sul2p, which control the concentration of endogenous activated sulfate intermediates; High affinity uptake of sulfate into the cell (859 aa)    
Predicted Functional Partners:
SUL2
High affinity sulfate permease; sulfate uptake is mediated by specific sulfate transporters Sul1p and Sul2p, which control the concentration of endogenous activated sulfate intermediates; High affinity uptake of sulfate into the cell (893 aa)
   
 
0.914
MET3
ATP sulfurylase, catalyzes the primary step of intracellular sulfate activation, essential for assimilatory reduction of sulfate to sulfide, involved in methionine metabolism; Catalyzes the first intracellular reaction of sulfate assimilation, forming adenosine-5’-phosphosulfate (APS) from inorganic sulfate and ATP. Plays an important role in sulfate activation as a component of the biosynthesis pathway of sulfur- containing amino acids (511 aa)
     
   
  0.872
YGR125W
Putative protein of unknown function; deletion mutant has decreased rapamycin resistance but normal wormannin resistance; green fluorescent protein (GFP)-fusion protein localizes to the vacuole (1036 aa)
       
      0.868
ACP1
Mitochondrial matrix acyl carrier protein, involved in biosynthesis of octanoate, which is a precursor to lipoic acid; activated by phosphopantetheinylation catalyzed by Ppt2p; Carrier of the growing fatty acid chain in fatty acid biosynthesis (By similarity). May be involved in the synthesis of very-long-chain fatty acids. Accessory and non-catalytic subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I), which functions in the transfer of electrons from NADH to the respiratory chain (By similarity) (125 aa)
     
 
  0.817
MET16
3’-phosphoadenylsulfate reductase, reduces 3’-phosphoadenylyl sulfate to adenosine-3’,5’-bisphosphate and free sulfite using reduced thioredoxin as cosubstrate, involved in sulfate assimilation and methionine metabolism; The NADP dependent reduction of PAPS into sulfite involves thioredoxin which probably plays the role of a thiol carrier (261 aa)
     
   
  0.745
MET10
Subunit alpha of assimilatory sulfite reductase, which converts sulfite into sulfide; This enzyme catalyzes the 6-electron reduction of sulfite to sulfide. This is one of several activities required for the biosynthesis of L-cysteine from sulfate (1035 aa)
     
   
  0.681
MET5
Sulfite reductase beta subunit, involved in amino acid biosynthesis, transcription repressed by methionine; Catalyzes the reduction of sulfite to sulfide, one of several activities required for the biosynthesis of L-cysteine from sulfate (1442 aa)
     
   
  0.673
MET14
Adenylylsulfate kinase, required for sulfate assimilation and involved in methionine metabolism; Catalyzes the synthesis of activated sulfate (202 aa)
     
   
  0.553
CYS4
Cystathionine beta-synthase, catalyzes synthesis of cystathionine from serine and homocysteine, the first committed step in cysteine biosynthesis; responsible for hydrogen sulfide generation; mutations in human ortholog cause homocystinuria (507 aa)
     
 
  0.545
MET2
L-homoserine-O-acetyltransferase, catalyzes the conversion of homoserine to O-acetyl homoserine which is the first step of the methionine biosynthetic pathway (486 aa)
   
   
  0.488
Your Current Organism:
Saccharomyces cerevisiae
NCBI taxonomy Id: 4932
Other names: Candida robusta, Pachytichospora, S. cerevisiae, Saccharomyces, Saccharomyces capensis, Saccharomyces cerevisiae, Saccharomyces italicus, Saccharomyces oviformis, Saccharomyces uvarum var. melibiosus, lager beer yeast, yeast
Server load: low (2%) [HD]