STRINGSTRING
RER1 protein (Saccharomyces cerevisiae) - STRING interaction network
"RER1" - Protein involved in retention of membrane proteins, including Sec12p, in the ER in Saccharomyces cerevisiae
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
RER1Protein involved in retention of membrane proteins, including Sec12p, in the ER; localized to Golgi; functions as a retrieval receptor in returning membrane proteins to the ER; Involved in the retrieval of endoplasmic reticulum membrane proteins from the early Golgi compartment. Required for correct localization of SEC12, SEC71 and SEC63 in the endoplasmic reticulum (188 aa)    
Predicted Functional Partners:
SEC12
Guanine nucleotide exchange factor (GEF), activates Sar1p by catalyzing the exchange of GDP for GTP; required for the initiation of COPII vesicle formation in ER to Golgi transport; glycosylated integral membrane protein of the ER; Guanine nucleotide-exchange factor (GEF) required for the formation or budding of transport vesicles from the ER. This function involves the cytoplasmic domain of the protein, which is thought to interact with the small GTP-binding protein SAR1. Required for autophagy (471 aa)
       
 
  0.971
ATG8
Component of autophagosomes and Cvt vesicles; undergoes conjugation to phosphatidylethanolamine (PE); Atg8p-PE is anchored to membranes, is involved in phagophore expansion, and may mediate membrane fusion during autophagosome formation; Ubiquitin-like modifier involved in cytoplasm to vacuole transport (Cvt) vesicles and autophagosomes formation. With ATG4, mediates the delivery of the vesicles and autophagosomes to the vacuole via the microtubule cytoskeleton. Required for selective autophagic degradation of the nucleus (nucleophagy) as well as for mitophagy which contributes to regu [...] (117 aa)
     
 
  0.816
SEC66
Non-essential subunit of Sec63 complex (Sec63p, Sec62p, Sec66p and Sec72p); with Sec61 complex, Kar2p/BiP and Lhs1p forms a channel competent for SRP-dependent and post-translational SRP-independent protein targeting and import into the ER; Acts as component of the Sec62/63 complex which is involved in SRP-independent post-translational translocation across the endoplasmic reticulum (ER) and functions together with the Sec61 complex and KAR2 in a channel-forming translocon complex. A cycle of assembly and disassembly of Sec62/63 complex from SEC61 may govern the activity of the translo [...] (206 aa)
     
 
  0.801
ERV29
Protein localized to COPII-coated vesicles, involved in vesicle formation and incorporation of specific secretory cargo; Constituent of COPII-coated endoplasmic reticulum- derived transport vesicles. Required for efficient transport of a subset of secretory proteins to the Golgi. The C-terminal di- lysine motif is required for exit from the endoplasmic reticulum. Required directly for packaging glycosylated pro-alpha-factor into COPII vesicles. Facilitates retrograde transport from the Golgi to the endoplasmic reticulum (310 aa)
     
 
  0.792
ATP20
Subunit g of the mitochondrial F1F0 ATP synthase; reversibly phosphorylated on two residues; unphosphorylated form is required for dimerization of the ATP synthase complex; Mitochondrial membrane ATP synthase (F(1)F(0) ATP synthase or Complex V) produces ATP from ADP in the presence of a proton gradient across the membrane which is generated by electron transport complexes of the respiratory chain. F-type ATPases consist of two structural domains, F(1) - containing the extramembraneous catalytic core, and F(0) - containing the membrane proton channel, linked together by a central stalk [...] (115 aa)
       
      0.766
ATP5
Subunit 5 of the stator stalk of mitochondrial F1F0 ATP synthase, which is an evolutionarily conserved enzyme complex required for ATP synthesis; homologous to bovine subunit OSCP (oligomycin sensitivity-conferring protein); phosphorylated; Mitochondrial membrane ATP synthase (F(1)F(0) ATP synthase or Complex V) produces ATP from ADP in the presence of a proton gradient across the membrane which is generated by electron transport complexes of the respiratory chain. F-type ATPases consist of two structural domains, F(1) - containing the extramembraneous catalytic core and F(0) - contain [...] (212 aa)
     
      0.760
MNS1
Alpha-1,2-mannosidase involved in ER quality control; catalyzes the removal of one mannose residue from Man9GlcNAc to produce a single isomer of Man8GlcNAc in N-linked oligosaccharide biosynthesis; integral to ER membrane; Involved in glycoprotein quality control as it is important for the targeting of misfolded glycoproteins for degradation. It primarily trims a single alpha-1,2-linked mannose residue from Man(9)GlcNAc(2) to produce Man(8)GlcNAc(2), but at high enzyme concentrations it further trims the carbohydrates to Man(5)GlcNAc(2) (549 aa)
     
 
  0.759
ATP1
Alpha subunit of the F1 sector of mitochondrial F1F0 ATP synthase, which is a large, evolutionarily conserved enzyme complex required for ATP synthesis; phosphorylated; Mitochondrial membrane ATP synthase (F(1)F(0) ATP synthase or Complex V) produces ATP from ADP in the presence of a proton gradient across the membrane which is generated by electron transport complexes of the respiratory chain. F-type ATPases consist of two structural domains, F(1) - containing the extramembraneous catalytic core, and F(0) - containing the membrane proton channel, linked together by a central stalk and [...] (545 aa)
     
      0.759
ATP7
Subunit d of the stator stalk of mitochondrial F1F0 ATP synthase, which is a large, evolutionarily conserved enzyme complex required for ATP synthesis; Mitochondrial membrane ATP synthase (F(1)F(0) ATP synthase or Complex V) produces ATP from ADP in the presence of a proton gradient across the membrane which is generated by electron transport complexes of the respiratory chain. F-type ATPases consist of two structural domains, F(1) - containing the extramembraneous catalytic core, and F(0) - containing the membrane proton channel, linked together by a central stalk and a peripheral sta [...] (174 aa)
     
      0.755
CDS1
Phosphatidate cytidylyltransferase (CDP-diglyceride synthetase); an enzyme that catalyzes that conversion of CTP + phosphate into diphosphate + CDP-diaclglyerol, a critical step in the synthesis of all major yeast phospholipids; Supplies CDP-diacylglycerol, which may play an important role as both a precursor to phosphoinositide biosynthesis in the plasma membrane and as a negative effector of phosphatidylinositol 4-kinase activity, thereby exerting an effect on cell proliferation via a lipid-dependent signal transduction cascade (457 aa)
     
      0.753
Your Current Organism:
Saccharomyces cerevisiae
NCBI taxonomy Id: 4932
Other names: Candida robusta, Pachytichospora, S. cerevisiae, Saccharomyces, Saccharomyces capensis, Saccharomyces cerevisiae, Saccharomyces italicus, Saccharomyces oviformis, Saccharomyces uvarum var. melibiosus, lager beer yeast, yeast
Server load: low (10%) [HD]