STRINGSTRING
GRX1 protein (Saccharomyces cerevisiae) - STRING interaction network
"GRX1" - Hydroperoxide and superoxide-radical responsive heat-stable glutathione-dependent disulfide oxidoreductase with active site cysteine pair in Saccharomyces cerevisiae
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
GRX1Hydroperoxide and superoxide-radical responsive heat-stable glutathione-dependent disulfide oxidoreductase with active site cysteine pair; protects cells from oxidative damage; Component of the glutathione system which performs several activities such as glutathione-dependent oxidoreductase, glutathione peroxidase and glutathione S-transferase (GST) activity. The disulfide bond functions as an electron carrier in the glutathione-dependent synthesis of deoxyribonucleotides by the enzyme ribonucleotide reductase. In addition, it is also involved in reducing cytosolic protein- and non-pro [...] (110 aa)    
Predicted Functional Partners:
GRX2
Cytoplasmic glutaredoxin, thioltransferase, glutathione-dependent disulfide oxidoreductase involved in maintaining redox state of target proteins, also exhibits glutathione peroxidase activity, expression induced in response to stress; Component of the glutathione system which performs several activities such as glutathione-dependent oxidoreductase, glutathione peroxidase and glutathione S-transferase (GST) activity. The disulfide bond functions as an electron carrier in the glutathione-dependent synthesis of deoxyribonucleotides by the enzyme ribonucleotide reductase. In addition, it [...] (143 aa)
   
0.972
RNR2
Ribonucleotide-diphosphate reductase (RNR), small subunit; the RNR complex catalyzes the rate-limiting step in dNTP synthesis and is regulated by DNA replication and DNA damage checkpoint pathways via localization of the small subunits; Provides the precursors necessary for DNA synthesis. Catalyzes the biosynthesis of deoxyribonucleotides from the corresponding ribonucleotides. RNR2 provides the diiron-tyrosyl radical center (399 aa)
   
  0.953
RNR1
Major isoform of the large subunit of ribonucleotide-diphosphate reductase; the RNR complex catalyzes rate-limiting step in dNTP synthesis, regulated by DNA replication and DNA damage checkpoint pathways via localization of small subunits; Provides the precursors necessary for DNA synthesis. Catalyzes the biosynthesis of deoxyribonucleotides from the corresponding ribonucleotides (888 aa)
   
 
  0.952
TRX2
Cytoplasmic thioredoxin isoenzyme of the thioredoxin system which protects cells against oxidative and reductive stress, forms LMA1 complex with Pbi2p, acts as a cofactor for Tsa1p, required for ER-Golgi transport and vacuole inheritance; Participates as a hydrogen donor in redox reactions through the reversible oxidation of its active center dithiol to a disulfide, accompanied by the transfer of 2 electrons and 2 protons. It is involved in many cellular processes, including deoxyribonucleotide synthesis, repair of oxidatively damaged proteins, protein folding, sulfur metabolism, and r [...] (104 aa)
   
 
  0.951
TRX1
Cytoplasmic thioredoxin isoenzyme of the thioredoxin system which protects cells against oxidative and reductive stress, forms LMA1 complex with Pbi2p, acts as a cofactor for Tsa1p, required for ER-Golgi transport and vacuole inheritance; Participates as a hydrogen donor in redox reactions through the reversible oxidation of its active center dithiol to a disulfide, accompanied by the transfer of 2 electrons and 2 protons. It is involved in many cellular processes, including deoxyribonucleotide synthesis, repair of oxidatively damaged proteins, protein folding, sulfur metabolism, and r [...] (103 aa)
   
 
  0.947
TRR1
Cytoplasmic thioredoxin reductase, key regulatory enzyme that determines the redox state of the thioredoxin system, which acts as a disulfide reductase system and protects cells against both oxidative and reductive stress; Acts on thioredoxins 1 and 2 (319 aa)
   
 
  0.876
TRR2
Mitochondrial thioredoxin reductase involved in protection against oxidative stress, required with Glr1p to maintain the redox state of Trx3p; contains active-site motif (CAVC) present in prokaryotic orthologs; binds NADPH and FAD; Acts on mitochondrial thioredoxin 3. Implicated in the defense against oxidative stress (342 aa)
   
 
  0.867
GLR1
Cytosolic and mitochondrial glutathione oxidoreductase, converts oxidized glutathione to reduced glutathione; mitochondrial but not cytosolic form has a role in resistance to hyperoxia; Maintains high levels of reduced glutathione in the cytosol (483 aa)
   
 
  0.834
GRX7
Cis-golgi localized monothiol glutaredoxin; more similar in activity to dithiol than other monothiol glutaredoxins; involved in the oxidative stress response; does not bind metal ions; functional overlap with GRX6 (203 aa)
       
 
  0.820
GRX5
Hydroperoxide and superoxide-radical responsive glutathione-dependent oxidoreductase; mitochondrial matrix protein involved in the synthesis/assembly of iron-sulfur centers; monothiol glutaredoxin subfamily member along with Grx3p and Grx4p; Monothiol glutaredoxin involved in iron-sulfur biogenesis. Required for normal iron homeostasis. Protects cells against oxidative damage due to reactive oxygen species (150 aa)
   
 
  0.812
Your Current Organism:
Saccharomyces cerevisiae
NCBI taxonomy Id: 4932
Other names: Candida robusta, Pachytichospora, S. cerevisiae, Saccharomyces, Saccharomyces capensis, Saccharomyces cerevisiae, Saccharomyces italicus, Saccharomyces oviformis, Saccharomyces uvarum var. melibiosus, lager beer yeast, yeast
Server load: low (4%) [HD]