VAC17 protein (Saccharomyces cerevisiae) - STRING interaction network
"VAC17" - Phosphoprotein involved in vacuole inheritance in Saccharomyces cerevisiae
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
protein homology
Your Input:
Gene Fusion
VAC17Phosphoprotein involved in vacuole inheritance; degraded in late M phase of the cell cycle; acts as a vacuole-specific receptor for myosin Myo2p; Vacuole-specific MYO2 receptor required for vacuole inheritance. Binds simultaneously to MYO2 and to VAC8, a vacuolar membrane protein, forming a transport complex which moves the attached vacuole membrane along actin cables into the bud. Once the vacuole arrives in the bud, VAC17 is degraded, depositing the vacuole in its correct location (423 aa)    
Predicted Functional Partners:
Phosphorylated and palmitoylated vacuolar membrane protein; interacts with Atg13p, required for the cytoplasm-to-vacuole targeting (Cvt) pathway; interacts with Nvj1p to form nucleus-vacuole junctions; Functions in both vacuole inheritance and protein targeting from the cytoplasm to vacuole (578 aa)
One of two type V myosin motors (along with MYO4) involved in actin-based transport of cargos; required for the polarized delivery of secretory vesicles, the vacuole, late Golgi elements, peroxisomes, and the mitotic spindle; Myosin heavy chain that is required for the cell cycle- regulated transport of various organelles and proteins for their segregation. Functions by binding with its tail domain to receptor proteins on organelles and exerting force with its N-terminal motor domain against actin filaments, thereby transporting its cargo along polarized actin cables. Essential for the [...] (1574 aa)
Phosphoinositide binding protein required for vesicle formation in autophagy and the cytoplasm-to-vacuole targeting (Cvt) pathway; binds both phosphatidylinositol (3,5)-bisphosphate and phosphatidylinositol 3-phosphate; WD-40 repeat protein; The PI(3,5)P2 regulatory complex regulates both the synthesis and turnover of phosphatidylinositol 3,5-bisphosphate (PtdIns(3,5)P2). May negatively regulate FAB1 activity by sequestering or masking VAC7 from FAB1. Necessary for proper vacuole morphology. Plays an important role in osmotically-induced vacuole fragmentation. Required for cytoplasm to [...] (500 aa)
Catalytic subunit of the main cell cycle cyclin-dependent kinase (CDK); alternately associates with G1 cyclins (CLNs) and G2/M cyclins (CLBs) which direct the CDK to specific substrates; This protein is essential for the completion of the start, the controlling event, in the cell cycle. More than 200 substrates have been identified (298 aa)
Target membrane receptor (t-SNARE) for vesicular intermediates traveling between the Golgi apparatus and the vacuole; controls entry of biosynthetic, endocytic, and retrograde traffic into the prevacuolar compartment; syntaxin; Plays a role in the sorting and targeting of vacuolar proteases (288 aa)
PIK-related protein kinase and rapamycin target; subunit of TORC1, a complex that controls growth in response to nutrients by regulating translation, transcription, ribosome biogenesis, nutrient transport and autophagy; involved in meiosis; Phosphatidylinositol 3-kinase homolog, component of TORC1, which regulates multiple cellular processes to control cell growth in response to environmental signals. Nutrient limitation and environmental stress signals cause inactivation of TORC1. Active TORC1 positively controls ribosome biogenesis via control of rRNA, ribosomal protein and tRNA gene [...] (2470 aa)
Phosphorylated protein of the mitochondrial outer membrane, localizes only to mitochondria of the bud; interacts with Myo2p to mediate mitochondrial distribution to buds; mRNA is targeted to the bud via the transport system involving She2p; Involved in the guiding of mitochondrial tubules to the bud tip during cell division (491 aa)
Protein kinase involved in transcriptional activation of osmostress-responsive genes; regulates G1 progression, cAPK activity, nitrogen activation of the FGM pathway; involved in life span regulation; homologous to mammalian Akt/PKB; Protein kinase that is part of growth control pathway which is at least partially redundant with the cAMP pathway. Regulates both BCY1 phosphorylation and MPK1 activity (PubMed-20702584). Regulates ribosome biogenesis, translation initiation, and entry into stationary phase in a TORC1-dependent manner (PubMed-17560372) (824 aa)
Rab family GTPase that interacts with the C-terminal tail domain of Myo2p; mediates distribution of mitochondria and endoplasmic reticuli to daughter cells; Involved in the positive control of both endoplasmic reticulum (ER) and mitochondrion inheritance during cell divison. Required for the MYO2-dependent retention of newly inherited mitochondria at the bud tip in developing daughter cells (417 aa)
Nuclear envelope protein, anchored to the nuclear inner membrane, that interacts with the vacuolar membrane protein Vac8p to promote formation of nucleus-vacuole junctions during piecemeal microautophagy of the nucleus (PMN); Involved in the formation of nucleus-vacuole (NV) junctions during piecemeal microautophagy of the nucleus (PMN). NV junctions are interorganelle interfaces mediated by NVJ1 in the nuclear envelope and VAC8 on the vacuole membrane. Together, NVJ1 and VAC8 form Velcro-like patches through which teardrop-like portions of the nucleus are pinched off into the vacuolar [...] (321 aa)
Your Current Organism:
Saccharomyces cerevisiae
NCBI taxonomy Id: 4932
Other names: Candida robusta, Pachytichospora, S. cerevisiae, Saccharomyces, Saccharomyces capensis, Saccharomyces cerevisiae, Saccharomyces italicus, Saccharomyces oviformis, Saccharomyces uvarum var. melibiosus, lager beer yeast, yeast
Server load: low (7%) [HD]