STRINGSTRING
GPD1 protein (Saccharomyces cerevisiae) - STRING interaction network
"GPD1" - NAD-dependent glycerol-3-phosphate dehydrogenase, key enzyme of glycerol synthesis, essential for growth under osmotic stress in Saccharomyces cerevisiae
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
GPD1NAD-dependent glycerol-3-phosphate dehydrogenase, key enzyme of glycerol synthesis, essential for growth under osmotic stress; expression regulated by high-osmolarity glycerol response pathway; homolog of Gpd2p; Catalyzes the production and accumulation of glycerol during hyperosmotic stress conditions. Glycerol acts as a osmoregulator that prevents loss of water and turgor of the cells (391 aa)    
Predicted Functional Partners:
GUT2
Mitochondrial glycerol-3-phosphate dehydrogenase; expression is repressed by both glucose and cAMP and derepressed by non-fermentable carbon sources in a Snf1p, Rsf1p, Hap2/3/4/5 complex dependent manner (649 aa)
   
  0.995
PNC1
Nicotinamidase that converts nicotinamide to nicotinic acid as part of the NAD(+) salvage pathway, required for life span extension by calorie restriction; PNC1 expression responds to all known stimuli that extend replicative life span; Catalyzes the deamidation of nicotinamide, an early step in the NAD(+) salvage pathway. Positively regulates SIR2-mediated silencing and longevity by preventing the accumulation of intracellular nicotinamide, an inhibitor of SIR2, during times of stress. Acts also on nicotinyl hydroxamate (216 aa)
   
 
  0.982
GPT2
Glycerol-3-phosphate/dihydroxyacetone phosphate dual substrate-specific sn-1 acyltransferase located in lipid particles and the ER; involved in the stepwise acylation of glycerol-3-phosphate and dihydroxyacetone in lipid biosynthesis; G-3-P/dihydroxyacetone phosphate dual substrate-specific sn-1 acyltransferase (743 aa)
   
  0.979
SCT1
Glycerol 3-phosphate/dihydroxyacetone phosphate dual substrate-specific sn-1 acyltransferase of the glycerolipid biosynthesis pathway, prefers 16-carbon fatty acids, similar to Gpt2p, gene is constitutively transcribed; G-3-P/dihydroxyacetone phosphate dual substrate-specific sn-1 acyltransferase (759 aa)
   
 
  0.978
GPD2
NAD-dependent glycerol 3-phosphate dehydrogenase, homolog of Gpd1p, expression is controlled by an oxygen-independent signaling pathway required to regulate metabolism under anoxic conditions; located in cytosol and mitochondria; Catalyzes the production of glycerol under anaerobic growth conditions. Glycerol production serves as a redox sink by consuming the excess cytosolic NADH during anaerobic metabolism (440 aa)
   
 
 
0.972
TPS1
Synthase subunit of trehalose-6-phosphate synthase/phosphatase complex, which synthesizes the storage carbohydrate trehalose; also found in a monomeric form; expression is induced by the stress response and repressed by the Ras-cAMP pathway; Synthase catalytic subunit of the trehalose synthase complex that catalyzes the production of trehalose from glucose-6- phosphate and UDP-glucose in a two step process. Can function independently of the complex (495 aa)
   
 
  0.968
GPP2
One of two redundant DL-glycerol-3-phosphatases (RHR2/GPP1 encodes the other) involved in glycerol biosynthesis; induced in response to hyperosmotic stress and oxidative stress, and during the diauxic transition; Glycerol-1-phosphate phosphohydrolase involved in glycerol biosynthesis. Plays a role in osmoadaptation (250 aa)
   
 
  0.966
SLC1
1-acyl-sn-glycerol-3-phosphate acyltransferase, catalyzes the acylation of lysophosphatidic acid to form phosphatidic acid, a key intermediate in lipid metabolism; enzymatic activity detected in lipid particles and microsomes; May be an acyltransferase with an altered substrate specificity that enables it to use a C-26-CoA in place of the C-16 or C-18-CoAs used by the wild-type protein (303 aa)
   
 
  0.956
TPS2
Phosphatase subunit of the trehalose-6-phosphate synthase/phosphatase complex, which synthesizes the storage carbohydrate trehalose; expression is induced by stress conditions and repressed by the Ras-cAMP pathway; Phosphatase catalytic subunit of the trehalose synthase complex that catalyzes the production of trehalose from glucose-6- phosphate and UDP-glucose in a two step process (896 aa)
   
 
  0.948
RTC3
Protein of unknown function involved in RNA metabolism; has structural similarity to SBDS, the human protein mutated in Shwachman-Diamond Syndrome (the yeast SBDS ortholog = SDO1); null mutation suppresses cdc13-1 temperature sensitivity; May play a role in RNA metabolism, rRNA-processing, and in a process influencing telomere capping (111 aa)
     
        0.940
Your Current Organism:
Saccharomyces cerevisiae
NCBI taxonomy Id: 4932
Other names: Candida robusta, Pachytichospora, S. cerevisiae, Saccharomyces, Saccharomyces capensis, Saccharomyces cerevisiae, Saccharomyces italicus, Saccharomyces oviformis, Saccharomyces uvarum var. melibiosus, lager beer yeast, yeast
Server load: low (9%) [HD]