STRINGSTRING
NDE2 protein (Saccharomyces cerevisiae) - STRING interaction network
"NDE2" - Mitochondrial external NADH dehydrogenase, catalyzes the oxidation of cytosolic NADH in Saccharomyces cerevisiae
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
NDE2Mitochondrial external NADH dehydrogenase, catalyzes the oxidation of cytosolic NADH; Nde1p and Nde2p are involved in providing the cytosolic NADH to the mitochondrial respiratory chain; External NADH dehydrogenase required for optimum cellular growth with a number of nonfermentable carbon sources, including ethanol. With NDE1, performes the mitochondrial oxidation of cytosolic NADH under these growth conditions. Regulates the mitochondrial glycerol-3-phosphate dehydrogenase, GUT2, also involved in cytosolic NADH oxidation (545 aa)    
Predicted Functional Partners:
YJL045W
Minor succinate dehydrogenase isozyme; homologous to Sdh1p, the major isozyme reponsible for the oxidation of succinate and transfer of electrons to ubiquinone; induced during the diauxic shift in a Cat8p-dependent manner; Probable minor catalytic subunit of succinate dehydrogenase (SDH) that is involved in complex II of the mitochondrial electron transport chain and is responsible for transferring electrons from succinate to ubiquinone (coenzyme Q). Probably forms a catalytic dimer with SDH2. Electrons flow from succinate to the FAD bound to the catalytic subunit, and sequentially thr [...] (634 aa)
   
 
  0.977
SDH3
Cytochrome b subunit of succinate dehydrogenase (Sdh1p, Sdh2p, Sdh3p, Sdh4p), which couples the oxidation of succinate to the transfer of electrons to ubiquinone as part of the TCA cycle and the mitochondrial respiratory chain; Membrane-anchoring mono-heme cytochrome b subunit of succinate dehydrogenase (SDH) that is involved in system II of the mitochondrial electron transport chain and is responsible for transferring electrons from succinate to ubiquinone (coenzyme Q). SDH3 and SDH4 form the membrane dimer that anchors the catalytic dimer formed by SDH1 and SDH2 to the matrix surface [...] (198 aa)
         
  0.977
CYT1
Cytochrome c1, component of the mitochondrial respiratory chain; expression is regulated by the heme-activated, glucose-repressed Hap2p/3p/4p/5p CCAAT-binding complex; Heme-containing component of the ubiquinol-cytochrome c reductase complex (complex III or cytochrome b-c1 complex), which is part of the mitochondrial respiratory chain that generates an electrochemical potential coupled to ATP synthesis. The complex couples electron transfer from ubiquinol to cytochrome c (309 aa)
     
 
  0.971
SDH2
Iron-sulfur protein subunit of succinate dehydrogenase (Sdh1p, Sdh2p, Sdh3p, Sdh4p), which couples the oxidation of succinate to the transfer of electrons to ubiquinone as part of the TCA cycle and the mitochondrial respiratory chain; Subunit of succinate dehydrogenase (SDH) that is involved in complex II of the mitochondrial electron transport chain and is responsible for transferring electrons from succinate to ubiquinone (coenzyme Q). SDH1 and SDH2 form the catalytic dimer. Electrons flow from succinate to the FAD bound to SDH1, and sequentially through the iron-sulfur clusters boun [...] (266 aa)
   
 
  0.968
COX1
Subunit I of cytochrome c oxidase, which is the terminal member of the mitochondrial inner membrane electron transport chain; one of three mitochondrially-encoded subunits; Cytochrome c oxidase is the component of the respiratory chain that catalyzes the reduction of oxygen to water. Subunits 1- 3 form the functional core of the enzyme complex. CO I is the catalytic subunit of the enzyme. Electrons originating in cytochrome c are transferred via the copper A center of subunit 2 and heme A of subunit 1 to the bimetallic center formed by heme A3 and copper B (534 aa)
         
  0.968
COB
Cytochrome b, mitochondrially encoded subunit of the ubiquinol-cytochrome c reductase complex which includes Cobp, Rip1p, Cyt1p, Cor1p, Qcr2p, Qcr6p, Qcr7p, Qcr8p, Qcr9p, and Qcr10p; Component of the ubiquinol-cytochrome c reductase complex (complex III or cytochrome b-c1 complex), which is part of the mitochondrial respiratory chain that generates an electrochemical potential coupled to ATP synthesis. The complex couples electron transfer from ubiquinol to cytochrome c (385 aa)
         
  0.966
COX2
Subunit II of cytochrome c oxidase, which is the terminal member of the mitochondrial inner membrane electron transport chain; one of three mitochondrially-encoded subunits; Cytochrome c oxidase is the component of the respiratory chain that catalyzes the reduction of oxygen to water. Subunits 1- 3 form the functional core of the enzyme complex. Subunit 2 transfers the electrons from cytochrome c via its binuclear copper A center to the bimetallic center of the catalytic subunit 1 (251 aa)
     
 
  0.965
RIP1
Ubiquinol-cytochrome-c reductase, a Rieske iron-sulfur protein of the mitochondrial cytochrome bc1 complex; transfers electrons from ubiquinol to cytochrome c1 during respiration; Component of the ubiquinol-cytochrome c reductase complex (complex III or cytochrome b-c1 complex), which is a respiratory chain that generates an electrochemical potential coupled to ATP synthesis. The complex couples electron transfer from ubiquinol to cytochrome c (215 aa)
     
 
  0.965
SDH1
Flavoprotein subunit of succinate dehydrogenase (Sdh1p, Sdh2p, Sdh3p, Sdh4p), which couples the oxidation of succinate to the transfer of electrons to ubiquinone as part of the TCA cycle and the mitochondrial respiratory chain; Catalytic subunit of succinate dehydrogenase (SDH) that is involved in complex II of the mitochondrial electron transport chain and is responsible for transferring electrons from succinate to ubiquinone (coenzyme Q). SDH1 and SDH2 form the catalytic dimer. Electrons flow from succinate to the FAD bound to SDH1, and sequentially through the iron-sulfur clusters b [...] (640 aa)
   
 
  0.965
BI4
Mitochondrial mRNA maturase, forms a complex with Nam2p to mediate splicing of the bI4 intron of the COB gene; encoded by both exon and intron sequences of partially processed COB mRNA; Mitochondrial mRNA maturase required for splicing of intron 4 of the cytochrome b (COB) gene, containing its own coding sequence, and intron 4 in COX1, coding for the related homing endonuclease aI4. In vivo splicing requires in addition the imported mitochondrial leucyl-tRNA synthetase NAM2. Both proteins seem to stimulate the intrinsic ribozyme activity of intron bI4 through binding to and stabilizing [...] (638 aa)
         
  0.964
Your Current Organism:
Saccharomyces cerevisiae
NCBI taxonomy Id: 4932
Other names: Candida robusta, Pachytichospora, S. cerevisiae, Saccharomyces, Saccharomyces capensis, Saccharomyces cerevisiae, Saccharomyces italicus, Saccharomyces oviformis, Saccharomyces uvarum var. melibiosus, lager beer yeast, yeast
Server load: low (9%) [HD]