STRINGSTRING
YDL124W protein (Saccharomyces cerevisiae) - STRING interaction network
"YDL124W" - NADPH-dependent alpha-keto amide reductase in Saccharomyces cerevisiae
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
YDL124WNADPH-dependent alpha-keto amide reductase; reduces aromatic alpha-keto amides, aliphatic alpha-keto esters, and aromatic alpha-keto esters; member of the aldo-keto reductase (AKR) family; Reduces aromatic alpha-keto amides, aliphatic and aromatic alpha-keto esters, but not beta-keto esters (312 aa)    
Predicted Functional Partners:
TFS1
Protein that interacts with and inhibits carboxypeptidase Y and Ira2p; phosphatidylethanolamine-binding protein (PEBP) family member; targets to vacuolar membranes during stationary phase; acetylated by NatB N-terminal acetyltransferase; Specific and potent inhibitor of carboxypeptidase Y (219 aa)
   
 
  0.929
GAD1
Glutamate decarboxylase, converts glutamate into gamma-aminobutyric acid (GABA) during glutamate catabolism; involved in response to oxidative stress (585 aa)
     
   
  0.928
PNC1
Nicotinamidase that converts nicotinamide to nicotinic acid as part of the NAD(+) salvage pathway, required for life span extension by calorie restriction; PNC1 expression responds to all known stimuli that extend replicative life span; Catalyzes the deamidation of nicotinamide, an early step in the NAD(+) salvage pathway. Positively regulates SIR2-mediated silencing and longevity by preventing the accumulation of intracellular nicotinamide, an inhibitor of SIR2, during times of stress. Acts also on nicotinyl hydroxamate (216 aa)
   
        0.921
STF2
Protein involved in regulation of the mitochondrial F1F0-ATP synthase; Stf1p and Stf2p may act as stabilizing factors that enhance inhibitory action of the Inh1p protein; This is one of two stabilizing factors of the inactive mitochondrial F0F1-ATPase. It binds to the F0 part and facilitates the binding of both the inhibitor and the 9 kDa protein to F1 (84 aa)
     
        0.901
SOL4
6-phosphogluconolactonase with similarity to Sol3p; Hydrolysis of 6-phosphogluconolactone to 6- phosphogluconate (255 aa)
     
 
  0.890
GLK1
Glucokinase, catalyzes the phosphorylation of glucose at C6 in the first irreversible step of glucose metabolism; one of three glucose phosphorylating enzymes; expression regulated by non-fermentable carbon sources; Two isoenzymes, hexokinase-1 and hexokinase-2, can phosphorylate keto- and aldohexoses in yeast, whereas a third isoenzyme, GLK, is specific for aldohexoses. All glucose phosphorylating enzymes are involved in glucose uptake (500 aa)
 
 
   
  0.883
PGM2
Phosphoglucomutase, catalyzes the conversion from glucose-1-phosphate to glucose-6-phosphate, which is a key step in hexose metabolism; functions as the acceptor for a Glc-phosphotransferase; Major phosphoglucomutase isozyme that catalyzes the reversible interconversion of glucose 1-phosphate and glucose 6- phosphate (PubMed-5784209). Constitutes about 80-90% of the phosphoglucomutase activity in the cell (PubMed-14264884, PubMed-5231755). Key enzyme in hexose metabolism. The forward reaction is an essential step in the energy metabolism of galactose since the product of the galactose [...] (569 aa)
     
   
  0.877
TSL1
Large subunit of trehalose 6-phosphate synthase (Tps1p)/phosphatase (Tps2p) complex, which converts uridine-5’-diphosphoglucose and glucose 6-phosphate to trehalose, similar to Tps3p and may share function; mutant has aneuploidy tolerance; Regulatory subunit of the trehalose synthase complex that catalyzes the production of trehalose from glucose-6- phosphate and UDP-glucose in a two step process. May stabilize the trehalose synthase complex, and confer sensitivity to physiological concentrations of phosphate and to fructose 6- phosphate (1098 aa)
     
   
  0.862
MSC1
Protein of unknown function; mutant is defective in directing meiotic recombination events to homologous chromatids; the authentic, non-tagged protein is detected in highly purified mitochondria and is phosphorylated (513 aa)
     
   
  0.861
TPS1
Synthase subunit of trehalose-6-phosphate synthase/phosphatase complex, which synthesizes the storage carbohydrate trehalose; also found in a monomeric form; expression is induced by the stress response and repressed by the Ras-cAMP pathway; Synthase catalytic subunit of the trehalose synthase complex that catalyzes the production of trehalose from glucose-6- phosphate and UDP-glucose in a two step process. Can function independently of the complex (495 aa)
     
   
  0.859
Your Current Organism:
Saccharomyces cerevisiae
NCBI taxonomy Id: 4932
Other names: Candida robusta, Pachytichospora, S. cerevisiae, Saccharomyces, Saccharomyces capensis, Saccharomyces cerevisiae, Saccharomyces italicus, Saccharomyces oviformis, Saccharomyces uvarum var. melibiosus, lager beer yeast, yeast
Server load: low (6%) [HD]