STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
UGA3Transcriptional activator for GABA-dependent induction of GABA genes; binds to DNA elements found in the promoters of target genes and increases their expression in the presence of GABA (gamma-aminobutyrate); zinc finger transcription factor of the Zn(2)-Cys(6) binuclear cluster domain type; localized to the nucleus; examples of GABA genes include UGA1, UGA2, and UGA4. (528 aa)    
Predicted Functional Partners:
UGA2
Succinate-semialdehyde dehydrogenase [NADP(+)]; Succinate semialdehyde dehydrogenase; involved in the utilization of gamma-aminobutyrate (GABA) as a nitrogen source; part of the 4-aminobutyrate and glutamate degradation pathways; localized to the cytoplasm.
   
  
 0.983
UGA1
4-aminobutyrate aminotransferase; Gamma-aminobutyrate (GABA) transaminase; also known as 4-aminobutyrate aminotransferase; involved in the 4-aminobutyrate and glutamate degradation pathways; required for normal oxidative stress tolerance and nitrogen utilization; protein abundance increases in response to DNA replication stress; Belongs to the class-III pyridoxal-phosphate-dependent aminotransferase family.
  
  
 0.983
DAL81
Transcriptional activator protein DAL81; Positive regulator of genes in multiple nitrogen degradation pathways; contains DNA binding domain but does not appear to bind the dodecanucleotide sequence present in the promoter region of many genes involved in allantoin catabolism.
   
 
 0.983
UGA4
GABA (gamma-aminobutyrate) permease; serves as a GABA transport protein involved in the utilization of GABA as a nitrogen source; catalyzes the transport of putrescine and delta-aminolevulinic acid (ALA); localized to the vacuolar membrane; Belongs to the amino acid-polyamine-organocation (APC) superfamily. Amino acid/choline transporter (ACT) (TC 2.A.3.4) family.
   
  
 0.907
DAL80
Nitrogen regulatory protein DAL80; Negative regulator of genes in multiple nitrogen degradation pathways; expression is regulated by nitrogen levels and by Gln3p; member of the GATA-binding family, forms homodimers and heterodimers with Gzf3p; DAL80 has a paralog, GZF3, that arose from the whole genome duplication.
   
 
 0.850
GAD1
Glutamate decarboxylase; converts glutamate into gamma-aminobutyric acid (GABA) during glutamate catabolism; involved in response to oxidative stress.
   
 
 0.833
GDH2
NAD(+)-dependent glutamate dehydrogenase; degrades glutamate to ammonia and alpha-ketoglutarate; expression sensitive to nitrogen catabolite repression and intracellular ammonia levels; genetically interacts with GDH3 by suppressing stress-induced apoptosis.
  
  
 0.798
ACP1
Mitochondrial matrix acyl carrier protein; involved in biosynthesis of octanoate, which is a precursor to lipoic acid; activated by phosphopantetheinylation catalyzed by Ppt2p.
   
 
 0.745
RRN11
RNA polymerase I-specific transcription initiation factor RRN11; Component of the core factor (CF) rDNA transcription factor complex; CF is required for transcription of 35S rRNA genes by RNA polymerase I and is composed of Rrn6p, Rrn7p, and Rrn11p.
   
   0.725
CMD1
Calmodulin; Ca2+ binding protein that regulates Ca2+ independent processes (mitosis, bud growth, actin organization, endocytosis, etc.) and Ca2+ dependent processes (stress-activated pathways), targets include Nuf1p, Myo2p and calcineurin; binds to the Hog1p MAPK in response to hyperosmotic stress; potentiates membrane tubulation and constriction mediated by the Rvs161p-Rvs167p complex; human CALM1 or CALM2 functionally complement repression induced inviability.
   
 
 0.717
Your Current Organism:
Saccharomyces cerevisiae
NCBI taxonomy Id: 4932
Other names: ATCC 18824, Candida robusta, Mycoderma cerevisiae, NRRL Y-12632, S. cerevisiae, Saccharomyces capensis, Saccharomyces italicus, Saccharomyces oviformis, Saccharomyces uvarum var. melibiosus, yeast
Server load: low (34%) [HD]