STRINGSTRING
YDL177C protein (Saccharomyces cerevisiae) - STRING interaction network
"YDL177C" - Putative protein of unknown function in Saccharomyces cerevisiae
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
YDL177CPutative protein of unknown function; similar to the mouse IMPACT gene; YDL177C is not an essential gene (170 aa)    
Predicted Functional Partners:
DCD1
Deoxycytidine monophosphate (dCMP) deaminase required for dCTP and dTTP synthesis; expression is NOT cell cycle regulated; Supplies the nucleotide substrate for thymidylate synthetase (312 aa)
   
 
    0.665
CDC8
Thymidylate and uridylate kinase, functions in de novo biosynthesis of pyrimidine deoxyribonucleotides; converts dTMP to dTDP and dUMP to dUTP; essential for mitotic and meiotic DNA replication; homologous to S. pombe Tmp1p; Catalyzes the conversion of dTMP to dTDP (216 aa)
       
    0.656
GLR1
Cytosolic and mitochondrial glutathione oxidoreductase, converts oxidized glutathione to reduced glutathione; mitochondrial but not cytosolic form has a role in resistance to hyperoxia; Maintains high levels of reduced glutathione in the cytosol (483 aa)
       
  0.628
DUT1
Deoxyuridine triphosphate diphosphatase (dUTPase); catalyzes hydrolysis of dUTP to dUMP and PPi, thereby preventing incorporation of uracil into DNA during replication; critical for the maintenance of genetic stability; also has diphosphatase activi /.../deoxyinosine triphosphate; This enzyme is involved in nucleotide metabolism- it produces dUMP, the immediate precursor of thymidine nucleotides and it decreases the intracellular concentration of dUTP so that uracil cannot be incorporated into DNA (147 aa)
   
 
    0.625
SHM2
Cytosolic serine hydroxymethyltransferase, converts serine to glycine plus 5,10 methylenetetrahydrofolate; major isoform involved in generating precursors for purine, pyrimidine, amino acid, and lipid biosynthesis; Interconversion of serine and glycine (469 aa)
       
    0.622
SHM1
Mitochondrial serine hydroxymethyltransferase, converts serine to glycine plus 5,10 methylenetetrahydrofolate; involved in generating precursors for purine, pyrimidine, amino acid, and lipid biosynthesis; reverse reaction generates serine; Interconversion of serine and glycine (490 aa)
       
    0.622
IRC15
Microtubule associated protein; regulates microtubule dynamics; required for accurate meiotic chromosome segregation; null mutant displays large budded cells due to delayed mitotic progression, increased levels of spontaneous Rad52 foci (499 aa)
       
  0.619
LPD1
Dihydrolipoamide dehydrogenase, the lipoamide dehydrogenase component (E3) of the pyruvate dehydrogenase and 2-oxoglutarate dehydrogenase multi-enzyme complexes; Lipoamide dehydrogenase is a component of the alpha- ketoacid dehydrogenase complexes. This includes the pyruvate dehydrogenase complex, which catalyzes the overall conversion of pyruvate to acetyl-CoA and CO(2). Acts also as component of the glycine cleavage system (glycine decarboxylase complex), which catalyzes the degradation of glycine (499 aa)
       
  0.619
ERR2
Protein of unknown function, has similarity to enolases (437 aa)
         
  0.615
ERR1
Putative phosphopyruvate hydratase (437 aa)
         
  0.615
Your Current Organism:
Saccharomyces cerevisiae
NCBI taxonomy Id: 4932
Other names: Candida robusta, Pachytichospora, S. cerevisiae, Saccharomyces, Saccharomyces capensis, Saccharomyces cerevisiae, Saccharomyces italicus, Saccharomyces oviformis, Saccharomyces uvarum var. melibiosus, lager beer yeast, yeast
Server load: low (6%) [HD]