STRINGSTRING
ARF1 protein (Saccharomyces cerevisiae) - STRING interaction network
"ARF1" - ADP-ribosylation factor, GTPase of the Ras superfamily involved in regulation of coated vesicle formation in intracellular trafficking within the Golgi in Saccharomyces cerevisiae
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
ARF1ADP-ribosylation factor, GTPase of the Ras superfamily involved in regulation of coated vesicle formation in intracellular trafficking within the Golgi; functionally interchangeable with Arf2p; GTP-binding protein involved in protein trafficking; may modulate vesicle budding and uncoating within the Golgi apparatus. Recruits polyadenylate-binding protein PAB1 to COPI vesicles, and this is required for correct localization of the asymmetrically distributed ASH1 mRNA (181 aa)    
Predicted Functional Partners:
SEC7
Guanine nucleotide exchange factor (GEF) for ADP ribosylation factors involved in proliferation of the Golgi, intra-Golgi transport and ER-to-Golgi transport; found in the cytoplasm and on Golgi-associated coated vesicles; May play a role in vesicular budding and traffic between compartments of the Golgi apparatus (2009 aa)
       
  0.996
GEA2
Guanine nucleotide exchange factor for ADP ribosylation factors (ARFs), involved in vesicular transport between the Golgi and ER, Golgi organization, and actin cytoskeleton organization; similar to but not functionally redundant with Gea1p; Activates the ARF proteins by exchanging bound GDP for free GTP (1459 aa)
     
  0.996
GEA1
Guanine nucleotide exchange factor for ADP ribosylation factors (ARFs), involved in vesicular transport between the Golgi and ER, Golgi organization, and actin cytoskeleton organization; similar to but not functionally redundant with Gea2p; Activates the ARF proteins by exchanging bound GDP for free GTP (1408 aa)
     
  0.996
GCS1
ADP-ribosylation factor GTPase activating protein (ARF GAP), involved in ER-Golgi transport; shares functional similarity with Glo3p; GTPase-activating protein (GAP) for ARF1 and ARF2. Involved in intracellular vesicular transport. Required for transport from the trans-Golgi network. Implicated in the regulation of retrograde transport from the Golgi to the ER and in actin cytoskeletal organization. May be involved in the maintenance of mitochondrial morphology, possibly through organizing the actin cytoskeleton in Saccharomyces (352 aa)
     
  0.990
GGA2
Protein that interacts with and regulates Arf1p and Arf2p in a GTP-dependent manner to facilitate traffic through the late Golgi; binds phosphatidylinositol 4-phosphate, which plays a role in TGN localization; has homology to gamma-adaptin; May play a role in the regulation of membrane traffic through the trans-Golgi network (585 aa)
       
  0.989
GLO3
ADP-ribosylation factor GTPase activating protein (ARF GAP), involved in ER-Golgi transport; shares functional similarity with Gcs1p; GTPase-activating protein for the ADP ribosylation factor (ARF) family. Involved in retrograde vesicular transport from the Golgi to the endoplasmic reticulum (493 aa)
     
  0.984
ARF2
ADP-ribosylation factor, GTPase of the Ras superfamily involved in regulation of coated formation vesicles in intracellular trafficking within the Golgi; functionally interchangeable with Arf1p; GTP-binding protein involved in protein trafficking; may modulate vesicle budding and uncoating within the Golgi apparatus (181 aa)
   
0.984
SEC21
Gamma subunit of coatomer, a heptameric protein complex that together with Arf1p forms the COPI coat; involved in ER to Golgi transport of selective cargo; The coatomer is a cytosolic protein complex that binds to dilysine motifs and reversibly associates with Golgi non- clathrin-coated vesicles, which further mediate biosynthetic protein transport from the ER, via the Golgi up to the trans Golgi network. Coatomer complex is required for budding from Golgi membranes, and is essential for the retrograde Golgi-to-ER transport of dilysine-tagged proteins (935 aa)
     
 
  0.982
GGA1
Golgi-localized protein with homology to gamma-adaptin, interacts with and regulates Arf1p and Arf2p in a GTP-dependent manner in order to facilitate traffic through the late Golgi; May play a role in the regulation of membrane traffic through the trans-Golgi network (557 aa)
       
  0.981
APL4
Gamma-adaptin, large subunit of the clathrin-associated protein (AP-1) complex; binds clathrin; involved in vesicle mediated transport; Adaptins are components of the adaptor complexes which link clathrin to receptors in coated vesicles. Clathrin-associated protein complexes are believed to interact with the cytoplasmic tails of membrane proteins, leading to their selection and concentration. The AP-1 complex interacts directly with clathrin (832 aa)
       
 
  0.964
Your Current Organism:
Saccharomyces cerevisiae
NCBI taxonomy Id: 4932
Other names: Candida robusta, Pachytichospora, S. cerevisiae, Saccharomyces, Saccharomyces capensis, Saccharomyces cerevisiae, Saccharomyces italicus, Saccharomyces oviformis, Saccharomyces uvarum var. melibiosus, lager beer yeast, yeast
Server load: low (4%) [HD]