STRINGSTRING
TRM8 protein (Saccharomyces cerevisiae) - STRING interaction network
"TRM8" - Noncatalytic subunit of a tRNA methyltransferase complex in Saccharomyces cerevisiae
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
TRM8Noncatalytic subunit of a tRNA methyltransferase complex; Trm8p and Trm82p comprise an enzyme that catalyzes a methyl-transfer from S-adenosyl-l-methionine to the N(7) atom of guanine at position 46 in tRNA; Trm8 lacks catalytic activity if not boun /.../rm82p; Methyltransferase that catalyzes the formation of N(7)- methylguanine at position 46 (m7G46) in tRNA, a modification required to maintain stability of tRNAs; its absence resulting in tRNA decay. Both the D-stem and T-stem structures of tRNAs are required for efficient methyltransferase activity (286 aa)    
Predicted Functional Partners:
TRM82
Catalytic subunit of a tRNA methyltransferase complex; Trm8p and Trm82p comprise an enzyme that catalyzes a methyl-transfer from S-adenosyl-l-methionine to the N(7) atom of guanine at position 46 in tRNA; Trm8 lacks catalytic activity if not bound t /.../2p; Required for the formation of N(7)-methylguanine at position 46 (m7G46) in tRNA, a modification required to maintain stability of tRNAs; its absence resulting in tRNA decay. In the complex, it is required to stabilize and induce conformational changes of the catalytic subunit (444 aa)
     
  0.999
GCD14
Subunit of tRNA (1-methyladenosine) methyltransferase, with Gcd10p, required for the modification of the adenine at position 58 in tRNAs, especially tRNAi-Met; first identified as a negative regulator of GCN4 expression; Catalytic subunit of tRNA (adenine-N(1)-)- methyltransferase, which catalyzes the formation of N(1)- methyladenine at position 58 (m1A58) in initiator methionyl-tRNA. GCD14 is also required for repression of GCN4 mRNA translation by the upstream open reading frames (uORFs) under conditions of amino acid sufficiency (383 aa)
     
  0.990
GCD10
Subunit of tRNA (1-methyladenosine) methyltransferase with Gcd14p, required for the modification of the adenine at position 58 in tRNAs, especially tRNAi-Met; first identified as a negative regulator of GCN4 expression; Substrate-binding subunit of tRNA (adenine-N(1)-)- methyltransferase, which catalyzes the formation of N(1)- methyladenine at position 58 (m1A58) in initiator methionyl-tRNA. Binds RNA. Also required for repression of GCN4 mRNA translation by the upstream open reading frames (uORFs) under conditions of amino acid sufficiency (478 aa)
     
 
  0.987
TRM11
Catalytic subunit of an adoMet-dependent tRNA methyltransferase complex (Trm11p-Trm112p), required for the methylation of the guanosine nucleotide at position 10 (m2G10) in tRNAs; contains a THUMP domain and a methyltransferase domain; Catalytic subunit of an S-adenosyl-L-methionine- dependent tRNA methyltransferase complex that mediates the methylation of the guanosine nucleotide at position 10 (m2G10) in tRNAs (433 aa)
     
 
  0.978
TRM1
tRNA methyltransferase; two forms of the protein are made by alternative translation starts; localizes to both the nucleus and mitochondrion to produce the modified base N2,N2-dimethylguanosine in tRNAs in both compartments; Dimethylates a single guanine residue at position 26 of most tRNAs using S-adenosyl-L-methionine as donor of the methyl groups. Required for the modification of both mitochondrial and cytoplasmic tRNAs (570 aa)
     
   
  0.952
NCL1
S-adenosyl-L-methionine-dependent tRNA- m5C-methyltransferase, methylates cytosine to m5C at several positions in tRNAs and intron-containing pre-tRNAs; similar to Nop2p and human proliferation associated nucleolar protein p120; Methylates cytosine to m5C at several positions in different tRNAs and pre-tRNAs containing intron. Able to modify tRNAs at all four positions (34, 40, 48 and 49) at which m5C has been found in tRNAs. May be involved in ribosome biogenesis as its disruption leads to increased sensitivity to the antibiotic paromomycin (684 aa)
   
 
  0.951
BRX1
Nucleolar protein, constituent of 66S pre-ribosomal particles; depletion leads to defects in rRNA processing and a block in the assembly of large ribosomal subunits; possesses a sigma(70)-like RNA-binding motif; Required for biogenesis of the 60S ribosomal subunit (291 aa)
     
        0.951
RPF2
Essential protein involved in the processing of pre-rRNA and the assembly of the 60S ribosomal subunit; interacts with ribosomal protein L11; localizes predominantly to the nucleolus; constituent of 66S pre-ribosomal particles; Required for biogenesis of the 60S ribosomal subunit (344 aa)
     
        0.945
LHP1
RNA binding protein required for maturation of tRNA and U6 snRNA; acts as a molecular chaperone for RNAs transcribed by polymerase III; homologous to human La (SS-B) autoantigen; Molecular chaperone that binds nascent RNA polymerase III transcripts, stabilizing these RNAs against exonucleases. Required for the 3’ endonucleolytic cleavage that matures tRNA precursors and for efficient folding of certain pre-tRNAs. Cooperaes with GCD14 in the maturation of a subset of RNA polymerase III transcripts. Functions also in the assembly of certain RNA polymerase II-transcribed RNAs into RNPs. B [...] (275 aa)
     
 
  0.927
LSG1
Putative GTPase involved in 60S ribosomal subunit biogenesis; required for the release of Nmd3p from 60S subunits in the cytoplasm; GTPase required for the nuclear export of the 60S ribosomal subunit. Acts by mediating the release of NMD3 from the 60S ribosomal subunit after export into the cytoplasm (640 aa)
     
   
  0.919
Your Current Organism:
Saccharomyces cerevisiae
NCBI taxonomy Id: 4932
Other names: Candida robusta, Pachytichospora, S. cerevisiae, Saccharomyces, Saccharomyces capensis, Saccharomyces cerevisiae, Saccharomyces italicus, Saccharomyces oviformis, Saccharomyces uvarum var. melibiosus, lager beer yeast, yeast
Server load: low (9%) [HD]