STRINGSTRING
HEM12 protein (Saccharomyces cerevisiae) - STRING interaction network
"HEM12" - Uroporphyrinogen decarboxylase, catalyzes the fifth step in the heme biosynthetic pathway in Saccharomyces cerevisiae
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
HEM12Uroporphyrinogen decarboxylase, catalyzes the fifth step in the heme biosynthetic pathway; localizes to both the cytoplasm and nucleus; a hem12 mutant has phenotypes similar to patients with porphyria cutanea tarda; Catalyzes the decarboxylation of four acetate groups of uroporphyrinogen-III to yield coproporphyrinogen-III (362 aa)    
Predicted Functional Partners:
HEM13
Coproporphyrinogen III oxidase, an oxygen requiring enzyme that catalyzes the sixth step in the heme biosynthetic pathway; transcription is repressed by oxygen and heme (via Rox1p and Hap1p); Involved in the heme biosynthesis. Catalyzes the aerobic oxidative decarboxylation of propionate groups of rings A and B of coproporphyrinogen-III to yield the vinyl groups in protoporphyrinogen-IX (By similarity) (328 aa)
   
 
  0.998
HEM4
Uroporphyrinogen III synthase, catalyzes the conversion of hydroxymethylbilane to uroporphyrinogen III, the fourth step in heme biosynthesis; deficiency in the human homolog can result in the disease congenital erythropoietic porphyria; Catalyzes cyclization of the linear tetrapyrrole, hydroxymethylbilane, to the macrocyclic uroporphyrinogen III (275 aa)
   
 
  0.991
HEM3
Porphobilinogen deaminase, catalyzes the conversion of 4-porphobilinogen to hydroxymethylbilane, the third step in heme biosynthesis; localizes to the cytoplasm and nucleus; expression is regulated by Hap2p-Hap3p, but not by levels of heme; Tetrapolymerization of the monopyrrole PBG into the hydroxymethylbilane pre-uroporphyrinogen in several discrete steps (327 aa)
 
 
  0.984
MET1
S-adenosyl-L-methionine uroporphyrinogen III transmethylase, involved in the biosynthesis of siroheme, a prosthetic group used by sulfite reductase; required for sulfate assimilation and methionine biosynthesis; Siroheme synthase involved in methionine biosynthesis (593 aa)
       
  0.977
HEM2
Aminolevulinate dehydratase, a homo-octameric enzyme, catalyzes the conversion of 5-aminolevulinate to porphobilinogen, the second step in heme biosynthesis; enzymatic activity is zinc-dependent; localizes to the cytoplasm and nucleus; Catalyzes an early step in the biosynthesis of tetrapyrroles. Binds two molecules of 5-aminolevulinate per subunit, each at a distinct site, and catalyzes their condensation to form porphobilinogen (342 aa)
   
 
  0.947
EMC10
Putative protein of unknown function; green fluorescent protein (GFP)-fusion protein localizes to the endoplasmic reticulum; YDR056C is not an essential protein (205 aa)
     
        0.912
YDR053W
Putative protein of unknown function; open reading frame overlaps 5’ end of essential DBF4 gene encoding the regulatory subunit of the Cdc7p-Dbf4p kinase complex (131 aa)
     
        0.912
DET1
Acid phosphatase involved in the non-vesicular transport of sterols in both directions between the endoplasmic reticulum and plasma membrane; deletion confers sensitivity to nickel; Metal-independent, broad-range acid phosphatase. Involved, either directly or indirectly, in the bidirectional transport of sterols between the endoplasmic reticulum and the plasma membrane (334 aa)
     
        0.912
VMS1
Component of a Cdc48p-complex involved in protein quality control; exhibits cytosolic and ER-membrane localization, with Cdc48p, during normal growth, and contributes to ER-associated degradation (ERAD) of specific substrates at a step after their u /.../ination; forms a mitochondrially-associated complex with Cdc48p and Npl4p under oxidative stress that is required for ubiquitin-mediated mitochondria-associated protein degradation (MAD); conserved in C. elegans and humans; Involved in the endoplasmic reticulum (ER)-associated degradation (ERAD) pathway. Component of an evolutionarily [...] (632 aa)
     
        0.912
HEM15
Ferrochelatase, a mitochondrial inner membrane protein, catalyzes the insertion of ferrous iron into protoporphyrin IX, the eighth and final step in the heme biosynthetic pathway; Catalyzes the ferrous insertion into protoporphyrin IX (393 aa)
 
   
  0.899
Your Current Organism:
Saccharomyces cerevisiae
NCBI taxonomy Id: 4932
Other names: Candida robusta, Pachytichospora, S. cerevisiae, Saccharomyces, Saccharomyces capensis, Saccharomyces cerevisiae, Saccharomyces italicus, Saccharomyces oviformis, Saccharomyces uvarum var. melibiosus, lager beer yeast, yeast
Server load: low (4%) [HD]