STRINGSTRING
SAN1 protein (Saccharomyces cerevisiae) - STRING interaction network
"SAN1" - Ubiquitin-protein ligase in Saccharomyces cerevisiae
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
SAN1Ubiquitin-protein ligase; involved in the proteasome-dependent degradation of aberrant nuclear proteins; targets substrates with regions of exposed hydrophobicity containing 5 or more contiguous hydrophobic residues; contains intrinsically disordere /.../ons that contribute to substrate recognition; Plays a specific role in mating-type regulation of yeast, by acting post-translationally to control the stability or activity of the SIR4 proteins (610 aa)    
Predicted Functional Partners:
UBC7
Ubiquitin conjugating enzyme, involved in the ER-associated protein degradation pathway; requires Cue1p for recruitment to the ER membrane; proposed to be involved in chromatin assembly; Catalyzes the covalent attachment of ubiquitin to other proteins. Functions in degradation of misfolded or regulated proteins localized in the endoplasmic reticulum (ER) lumen or membrane via the ubiquitin-proteasome system. Cognate E2 conjugating enzyme for the DOA10 ubiquitin ligase complex, which is part of the ERAD-C pathway responsible for the rapid degradation of membrane proteins with misfolded [...] (165 aa)
       
 
  0.935
MCM4
Essential helicase component of heterohexameric MCM2-7 complexes which bind pre-replication complexes on DNA and melt DNA prior to replication; forms an Mcm4p-6p-7p subcomplex; shows nuclear accumulation in G1; homolog of S. pombe Cdc21p; Acts as component of the MCM2-7 complex (MCM complex) which is the putative replicative helicase essential for ’once per cell cycle’ DNA replication initiation and elongation in eukaryotic cells. The active ATPase sites in the MCM2-7 ring are formed through the interaction surfaces of two neighboring subunits such that a critical structure of a conser [...] (933 aa)
     
 
  0.884
SSM4
Ubiquitin-protein ligase involved in ER-associated protein degradation; located in the ER/nuclear envelope; ssm4 mutation suppresses mRNA instability caused by an rna14 mutation; E3 ubiquitin-protein ligase which accepts ubiquitin specifically from endoplasmic reticulum-associated UBC6 and UBC7 E2 ligases, and transfers it to substrates promoting their degradation. Mediates the degradation of a broad range of substrates, inluding endoplasmic reticulum membrane proteins (ERQC), soluble nuclear proteins and soluble cytoplasmic proteins (CytoQC). Component of the DOA10 ubiquitin ligase co [...] (1319 aa)
     
 
  0.837
UBR1
E3 ubiquitin ligase (N-recognin), forms heterodimer with Rad6p to ubiquitinate substrates in the N-end rule pathway; regulates peptide transport via Cup9p ubiquitination; mutation in human UBR1 causes Johansson-Blizzard Syndrome (JBS); Ubiquitin ligase protein which is a component of the N- end rule pathway. Recognizes and binds to proteins bearing specific N-terminal residues that are destabilizing according to the N-end rule, leading to their ubiquitination and subsequent degradation (1950 aa)
       
 
  0.830
RRI2
Subunit of the COP9 signalosome (CSN) complex that cleaves the ubiquitin-like protein Nedd8 from SCF ubiquitin ligases; plays a role in the mating pheromone response; Component of the COP9 signalosome (CSN) complex that acts as an regulator of the ubiquitin (Ubl) conjugation pathway by mediating the deneddylation of the cullin subunit of SCF-type E3 ubiquitin-protein ligase complexes. The CSN complex is involved in the regulation of the mating pheromone response (645 aa)
       
      0.778
SIR4
Silent information regulator that, together with SIR2 and SIR3, is involved in assembly of silent chromatin domains at telomeres and the silent mating-type loci; potentially phosphorylated by Cdc28p; some alleles of SIR4 prolong lifespan; The proteins SIR1 through SIR4 are required for transcriptional repression of the silent mating type loci, HML and HMR. The proteins SIR2 through SIR4 repress mulitple loci by modulating chromatin structure. Involves the compaction of chromatin fiber into a more condensed form (1358 aa)
       
 
  0.755
SPT16
Subunit of the heterodimeric FACT complex (Spt16p-Pob3p), which associates with chromatin via interaction with Nhp6Ap and Nhp6Bp, and reorganizes nucleosomes to facilitate access to DNA by RNA and DNA polymerases; Component of the FACT complex, a general chromatin factor that acts to reorganize nucleosomes. The FACT complex is involved in multiple processes that require DNA as a template such as mRNA elongation, DNA replication and DNA repair. During transcription elongation the FACT complex acts as a histone chaperone that both destabilizes and restores nucleosomal structure. It facil [...] (1035 aa)
       
 
  0.740
SIR3
Silencing protein that interacts with Sir2p and Sir4p, and histone H3 and H4 tails, to establish a transcriptionally silent chromatin state; required for spreading of silenced chromatin; recruited to chromatin through interaction with Rap1p; The proteins SIR1 through SIR4 are required for transcriptional repression of the silent mating type loci, HML and HMR. The proteins SIR2 through SIR4 repress mulitple loci by modulating chromatin structure. Involves the compaction of chromatin fiber into a more condensed form (978 aa)
     
 
  0.723
UBI4
Ubiquitin, becomes conjugated to proteins, marking them for selective degradation via the ubiquitin-26S proteasome system; essential for the cellular stress response; encoded as a polyubiquitin precursor comprised of 5 head-to-tail repeats; Ubiquitin exists either covalently attached to another protein, or free (unanchored). When covalently bound, it is conjugated to target proteins via an isopeptide bond either as a monomer (monoubiquitin), a polymer linked via different Lys residues of the ubiquitin (polyubiquitin chains) or a linear polymer linked via the initiator Met of the ubiqui [...] (381 aa)
     
 
  0.715
SIS1
Type II HSP40 co-chaperone that interacts with the HSP70 protein Ssa1p; not functionally redundant with Ydj1p due to due to substrate specificity; shares similarity with bacterial DnaJ proteins; Required for nuclear migration during mitosis. It is required for the normal initiation of translation. Might mediate the dissociation of a specific protein complex of the translation machinery. Essential for viability (352 aa)
     
 
  0.703
Your Current Organism:
Saccharomyces cerevisiae
NCBI taxonomy Id: 4932
Other names: Candida robusta, Pachytichospora, S. cerevisiae, Saccharomyces, Saccharomyces capensis, Saccharomyces cerevisiae, Saccharomyces italicus, Saccharomyces oviformis, Saccharomyces uvarum var. melibiosus, lager beer yeast, yeast
Server load: low (8%) [HD]