STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
EKI1Ethanolamine kinase; primarily responsible for phosphatidylethanolamine synthesis via the CDP-ethanolamine pathway; exhibits some choline kinase activity, thus contributing to phosphatidylcholine synthesis via the CDP-choline pathway; EKI1 has a paralog, CKI1, that arose from the whole genome duplication. (534 aa)    
Predicted Functional Partners:
ECT1
Ethanolamine-phosphate cytidylyltransferase; catalyzes the second step of phosphatidylethanolamine biosynthesis; involved in the maintenance of plasma membrane; similar to mammalian CTP: phosphocholine cytidylyl-transferases; inability of the null mutant to synthesize phosphatidylethanolamine and phosphatidylcholine from ethanolamine is functionally complemented by human PCYT2.
   
 
 0.996
CKI1
Choline kinase; catalyzes the first step in phosphatidylcholine synthesis via the CDP-choline (Kennedy pathway); exhibits some ethanolamine kinase activity contributing to phosphatidylethanolamine synthesis via the CDP-ethanolamine pathway; CKI1 has a paralog, EKI1, that arose from the whole genome duplication.
  
 
0.961
EPT1
Sn-1,2-diacylglycerol ethanolamine- and cholinephosphotranferase; not essential for viability; EPT1 has a paralog, CPT1, that arose from the whole genome duplication.
   
  
 0.956
PCT1
Cholinephosphate cytidylyltransferase; a rate-determining enzyme of the CDP-choline pathway for phosphatidylcholine synthesis, inhibited by Sec14p, activated upon lipid-binding; contains an element within the regulatory domain involved in both silencing and activation of enzymatic activity.
  
 
 0.947
KOG1
Subunit of TORC1; TORC1 is a rapamycin-sensitive complex involved in growth control that contains Tor1p or Tor2p, Lst8p and Tco89p; contains four HEAT repeats and seven WD-40 repeats; may act as a scaffold protein to couple TOR and its effectors; Belongs to the WD repeat RAPTOR family.
    
 
 0.929
GDE1
Glycerophosphocholine (GroPCho) phosphodiesterase; hydrolyzes GroPCho to choline and glycerolphosphate, for use as a phosphate source and as a precursor for phosphocholine synthesis; may interact with ribosomes.
  
 
 0.925
CPT1
Cholinephosphotransferase; required for phosphatidylcholine biosynthesis and for inositol-dependent regulation of EPT1 transcription; CPT1 has a paralog, EPT1, that arose from the whole genome duplication; Belongs to the CDP-alcohol phosphatidyltransferase class-I family.
   
  
 0.879
PSD1
Phosphatidylserine decarboxylase of the mitochondrial inner membrane; converts phosphatidylserine to phosphatidylethanolamine; regulates mitochondrial fusion and morphology by affecting lipid mixing in the mitochondrial membrane and by influencing the ratio of long to short forms of Mgm1p; partly exposed to the mitochondrial intermembrane space; autocatalytically processed; Belongs to the phosphatidylserine decarboxylase family. PSD-B subfamily. Eukaryotic type I sub-subfamily.
   
  
 0.879
PSD2
Phosphatidylserine decarboxylase 2 alpha chain; Phosphatidylserine decarboxylase of the Golgi and vacuolar membranes; converts phosphatidylserine to phosphatidylethanolamine; controls vacuolar membrane phospholipid content by regulating phospholipids in compartments that will eventually give rise to the vacuole; loss of Psd2p causes a specific reduction in vacuolar membrane PE levels while total PE levels are not significantly affected.
      
 0.875
OPI3
Phosphatidyl-N-methylethanolamine N-methyltransferase; Methylene-fatty-acyl-phospholipid synthase; catalyzes the last two steps in phosphatidylcholine biosynthesis; also known as phospholipid methyltransferase.
   
  
 0.812
Your Current Organism:
Saccharomyces cerevisiae
NCBI taxonomy Id: 4932
Other names: ATCC 18824, Candida robusta, Mycoderma cerevisiae, NRRL Y-12632, S. cerevisiae, Saccharomyces capensis, Saccharomyces italicus, Saccharomyces oviformis, Saccharomyces uvarum var. melibiosus, yeast
Server load: medium (54%) [HD]