STRINGSTRING
TRM82 protein (Saccharomyces cerevisiae) - STRING interaction network
"TRM82" - Catalytic subunit of a tRNA methyltransferase complex in Saccharomyces cerevisiae
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
TRM82Catalytic subunit of a tRNA methyltransferase complex; Trm8p and Trm82p comprise an enzyme that catalyzes a methyl-transfer from S-adenosyl-l-methionine to the N(7) atom of guanine at position 46 in tRNA; Trm8 lacks catalytic activity if not bound t /.../2p; Required for the formation of N(7)-methylguanine at position 46 (m7G46) in tRNA, a modification required to maintain stability of tRNAs; its absence resulting in tRNA decay. In the complex, it is required to stabilize and induce conformational changes of the catalytic subunit (444 aa)    
Predicted Functional Partners:
TRM8
Noncatalytic subunit of a tRNA methyltransferase complex; Trm8p and Trm82p comprise an enzyme that catalyzes a methyl-transfer from S-adenosyl-l-methionine to the N(7) atom of guanine at position 46 in tRNA; Trm8 lacks catalytic activity if not boun /.../rm82p; Methyltransferase that catalyzes the formation of N(7)- methylguanine at position 46 (m7G46) in tRNA, a modification required to maintain stability of tRNAs; its absence resulting in tRNA decay. Both the D-stem and T-stem structures of tRNAs are required for efficient methyltransferase activity (286 aa)
     
  0.999
GCD10
Subunit of tRNA (1-methyladenosine) methyltransferase with Gcd14p, required for the modification of the adenine at position 58 in tRNAs, especially tRNAi-Met; first identified as a negative regulator of GCN4 expression; Substrate-binding subunit of tRNA (adenine-N(1)-)- methyltransferase, which catalyzes the formation of N(1)- methyladenine at position 58 (m1A58) in initiator methionyl-tRNA. Binds RNA. Also required for repression of GCN4 mRNA translation by the upstream open reading frames (uORFs) under conditions of amino acid sufficiency (478 aa)
     
  0.990
GCD14
Subunit of tRNA (1-methyladenosine) methyltransferase, with Gcd10p, required for the modification of the adenine at position 58 in tRNAs, especially tRNAi-Met; first identified as a negative regulator of GCN4 expression; Catalytic subunit of tRNA (adenine-N(1)-)- methyltransferase, which catalyzes the formation of N(1)- methyladenine at position 58 (m1A58) in initiator methionyl-tRNA. GCD14 is also required for repression of GCN4 mRNA translation by the upstream open reading frames (uORFs) under conditions of amino acid sufficiency (383 aa)
     
  0.983
TRM11
Catalytic subunit of an adoMet-dependent tRNA methyltransferase complex (Trm11p-Trm112p), required for the methylation of the guanosine nucleotide at position 10 (m2G10) in tRNAs; contains a THUMP domain and a methyltransferase domain; Catalytic subunit of an S-adenosyl-L-methionine- dependent tRNA methyltransferase complex that mediates the methylation of the guanosine nucleotide at position 10 (m2G10) in tRNAs (433 aa)
     
 
  0.979
PUF6
Pumilio-homology domain protein that binds the 3’ UTR of ASH1 mRNA and represses its translation, resulting in proper asymmetric localization of ASH1 mRNA; also co-sediments with the 60S ribosomal subunit and is required for its biogenesis; RNA-binding protein involved in post-transcriptional regulation. Component of the ASH1 mRNP which transports the ASH1 mRNA to the distal tip of the bud, where the ASH1 protein is translated and targeted to the daughter cell nucleus. Binds to the ASH1 3’-UTR containing the PUF consensus UUGU segment and represses its translation. This silencing of AS [...] (656 aa)
     
   
  0.958
ARX1
Shuttling pre-60S factor; involved in the biogenesis of ribosomal large subunit biogenesis; interacts directly with Alb1; responsible for Tif6 recycling defects in absence of Rei1; associated with the ribosomal export complex; Probable metalloprotease involved in proper assembly of pre-ribosomal particles during the biogenesis of the 60S ribosomal subunit. Accompanies the pre-60S particles to the cytoplasm (593 aa)
     
   
  0.944
PUS1
tRNA-pseudouridine synthase, introduces pseudouridines at positions 26-28, 34-36, 65, and 67 of tRNA; nuclear protein that appears to be involved in tRNA export; also acts on U2 snRNA; Formation of pseudouridine at positions 27 and 28 in the anticodon stem and loop of transfer RNAs; at positions 34 and 36 of intron-containing precursor tRNA(Ile) and at position 35 in the intron-containing tRNA(Tyr) (544 aa)
     
 
  0.940
SYO1
Protein required for biogenesis of the large ribosomal subunit; green fluorescent protein (GFP)-fusion protein localizes to the cytoplasm and nucleus; Nuclear import adapter that specifically recruits the two functionally and topologically linked ribosomal proteins RPL5 and RPL11 (encoded by RPL11A and RPL11B). Guarantees that this cargo pair remains bound together from the time of synthesis in the cytoplasm until delivery to the nascent 5S rRNA in the nucleus (620 aa)
     
        0.933
CIC1
Essential protein that interacts with proteasome components; has a potential role in proteasome substrate specificity; also copurifies with 66S pre-ribosomal particles; An adapter protein that specifically links the 26S proteasome to its substrate CDC4 which is one of the substrate recognition subunits of the SCF E3 ubiquitin ligase complex. Required for turnover of cell cycle regulatory proteins CDC4 and GRR1. Required for synthesis and nuclear export of 60S ribosomal subunits. Required for vegetative growth (376 aa)
     
        0.922
BRX1
Nucleolar protein, constituent of 66S pre-ribosomal particles; depletion leads to defects in rRNA processing and a block in the assembly of large ribosomal subunits; possesses a sigma(70)-like RNA-binding motif; Required for biogenesis of the 60S ribosomal subunit (291 aa)
     
        0.912
Your Current Organism:
Saccharomyces cerevisiae
NCBI taxonomy Id: 4932
Other names: Candida robusta, Pachytichospora, S. cerevisiae, Saccharomyces, Saccharomyces capensis, Saccharomyces cerevisiae, Saccharomyces italicus, Saccharomyces oviformis, Saccharomyces uvarum var. melibiosus, lager beer yeast, yeast
Server load: low (7%) [HD]