STRINGSTRING
YDR248C protein (Saccharomyces cerevisiae) - STRING interaction network
"YDR248C" - Putative gluconokinase in Saccharomyces cerevisiae
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
YDR248CPutative gluconokinase; sequence similarity to bacterial and human gluconokinase; green fluorescent protein (GFP)-fusion protein localizes to the cytoplasm; upregulated by deletion of the RNAP-II associated factor, PAF1 (193 aa)    
Predicted Functional Partners:
GND2
6-phosphogluconate dehydrogenase (decarboxylating), catalyzes an NADPH regenerating reaction in the pentose phosphate pathway; required for growth on D-glucono-delta-lactone; Catalyzes the oxidative decarboxylation of 6- phosphogluconate to ribulose 5-phosphate and CO(2), with concomitant reduction of NADP to NADPH (492 aa)
     
  0.994
GND1
6-phosphogluconate dehydrogenase (decarboxylating), catalyzes an NADPH regenerating reaction in the pentose phosphate pathway; required for growth on D-glucono-delta-lactone and adaptation to oxidative stress; Catalyzes the oxidative decarboxylation of 6- phosphogluconate to ribulose 5-phosphate and CO(2), with concomitant reduction of NADP to NADPH (489 aa)
     
  0.990
SOL3
6-phosphogluconolactonase, catalyzes the second step of the pentose phosphate pathway; weak multicopy suppressor of los1-1 mutation; homologous to Sol2p and Sol1p; Hydrolysis of 6-phosphogluconolactone to 6- phosphogluconate (249 aa)
   
  0.957
SOL2
Protein with a possible role in tRNA export; shows similarity to 6-phosphogluconolactonase non-catalytic domains but does not exhibit this enzymatic activity; homologous to Sol1p, Sol3p, and Sol4p; May be involved in regulation of tRNA subcellular distribution (315 aa)
     
  0.948
SOL4
6-phosphogluconolactonase with similarity to Sol3p; Hydrolysis of 6-phosphogluconolactone to 6- phosphogluconate (255 aa)
     
  0.944
SOL1
Protein with a possible role in tRNA export; shows similarity to 6-phosphogluconolactonase non-catalytic domains but does not exhibit this enzymatic activity; homologous to Sol2p, Sol3p, and Sol4p; May be involved in regulation of tRNA subcellular distribution (321 aa)
     
  0.937
ZWF1
Glucose-6-phosphate dehydrogenase (G6PD), catalyzes the first step of the pentose phosphate pathway; involved in adapting to oxidatve stress; homolog of the human G6PD which is deficient in patients with hemolytic anemia; Catalyzes the rate-limiting step of the oxidative pentose-phosphate pathway, which represents a route for the dissimilation of carbohydrates besides glycolysis. The main function of this enzyme is to provide reducing power (NADPH) and pentose phosphates for fatty acid and nucleic acid synthesis (By similarity) (505 aa)
   
 
  0.918
RKI1
Ribose-5-phosphate ketol-isomerase, catalyzes the interconversion of ribose 5-phosphate and ribulose 5-phosphate in the pentose phosphate pathway; participates in pyridoxine biosynthesis (258 aa)
       
  0.825
TAL1
Transaldolase, enzyme in the non-oxidative pentose phosphate pathway; converts sedoheptulose 7-phosphate and glyceraldehyde 3-phosphate to erythrose 4-phosphate and fructose 6-phosphate; Transaldolase is important for the balance of metabolites in the pentose-phosphate pathway (335 aa)
         
  0.760
YLR446W
Putative hexokinase; transcript is upregulated during sporulation and the unfolded protein response; YLR446W is not an essential gene (433 aa)
           
  0.709
Your Current Organism:
Saccharomyces cerevisiae
NCBI taxonomy Id: 4932
Other names: Candida robusta, Pachytichospora, S. cerevisiae, Saccharomyces, Saccharomyces capensis, Saccharomyces cerevisiae, Saccharomyces italicus, Saccharomyces oviformis, Saccharomyces uvarum var. melibiosus, lager beer yeast, yeast
Server load: low (3%) [HD]