STRINGSTRING
RTT103 protein (Saccharomyces cerevisiae) - STRING interaction network
"RTT103" - Protein involved in transcription termination by RNA polymerase II in Saccharomyces cerevisiae
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
RTT103Protein involved in transcription termination by RNA polymerase II; interacts with exonuclease Rat1p and Rai1p; has an RPR domain (carboxy-terminal domain interacting domain); also involved in regulation of Ty1 transposition; Involved in transcription termination by RNA polymerase II and in regulation of Ty1 transposition (409 aa)    
Predicted Functional Partners:
RPO21
RNA polymerase II largest subunit B220, part of central core; phosphorylation of C-terminal heptapeptide repeat domain regulates association with transcription and splicing factors; similar to bacterial beta-prime; DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates. Largest and catalytic component of RNA polymerase II which synthesizes mRNA precursors and many functional non-coding RNAs. Forms the polymerase active center together with the second largest subunit. Pol II is the central component of the basal [...] (1733 aa)
     
 
  0.977
RAT1
Nuclear 5’ to 3’ single-stranded RNA exonuclease, involved in RNA metabolism, including rRNA and snRNA processing as well as poly (A+) dependent and independent mRNA transcription termination; Possesses 5’->3’ exoribonuclease activity. Required for the processing of nuclear mRNA, rRNA and small nucleolar RNA (snoRNA) precursors. May promote termination of transcription by RNA polymerase II via the recruitment of 3’-end processing factors to the poly(A) site and by the degradation of nascent RNA downstream of the poly(A) site (1006 aa)
     
 
  0.973
RAI1
Nuclear protein with decapping endonuclease activity targeted toward mRNAs with unmethylated 7-methylguanosine cap structures; binds to and stabilizes the exoribonuclease Rat1p; required for pre-rRNA processing; homologous to human DOM3Z; Ribonuclease that specifically degrades pre-mRNAs with a defective 5’ end cap and is part of a pre-mRNA capping quality control. Has decapping and pyrophosphohydrolase activities. Has decapping activity toward incomplete 5’ end cap mRNAs such as unmethylated 5’ end-capped RNA to release GpppN and 5’ end monophosphate RNA. Also possesses RNA 5’-pyropho [...] (387 aa)
     
 
  0.969
RPB2
RNA polymerase II second largest subunit B150, part of central core; similar to bacterial beta subunit; DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates. Second largest component of RNA polymerases II which synthesizes mRNA precursors and many functional non-coding RNAs. Proposed to contribute to the polymerase catalytic activity and forms the polymerase active center together with the largest subunit. Pol II is the central component of the basal RNA polymerase II transcription machinery. During a transcr [...] (1224 aa)
     
 
  0.958
PCF11
mRNA 3’ end processing factor, essential component of cleavage and polyadenylation factor IA (CF IA), involved in pre-mRNA 3’ end processing and in transcription termination; binds C-terminal domain of largest subunit of RNA pol II (Rpo21p); require /.../gene looping; Component of the cleavage factor IA (CFIA) complex, which is involved in the endonucleolytic cleavage during polyadenylation-dependent pre-mRNA 3’-end formation and cooperates with cleavage factor NAB4/CFIB and the cleavage and polyadenylation factor (CPF) complex. Independently involved in RNA polymerase II transcript te [...] (626 aa)
       
 
  0.896
CTK1
Catalytic (alpha) subunit of C-terminal domain kinase I (CTDK-I); phosphorylates both RNA pol II subunit Rpo21p to affect transcription and pre-mRNA 3’ end processing, and ribosomal protein Rps2p to increase translational fidelity; similar to the Dr /.../la dCDK12 and human CDK12 and probably CDK13; Catalytic subunit of the CTDK-I complex, which hyperphosphorylates the C-terminal heptapeptide repeat domain (CTD) of the largest RNA polymerase II subunit. CTDK-I phosphorylates ’Ser-5’ if the CTD substrate is not phosphorylated at ’Ser-5’, but will phosphorylate ’Ser-2’ of a CTD substrate [...] (528 aa)
     
 
  0.840
FCP1
Carboxy-terminal domain (CTD) phosphatase, essential for dephosphorylation of the repeated C-terminal domain of the RNA polymerase II large subunit (Rpo21p); Processively dephosphorylates ’Ser-2’ and ’Ser-5’ of the heptad repeats YSPTSPS in the C-terminal domain of the largest RNA polymerase II subunit (RPB1). This promotes the activity of RNA polymerase II (732 aa)
       
 
  0.801
RTR1
CTD phosphatase; dephosphorylates S5-P in the C-terminal domain of Rpo21p; has a cysteine-rich motif required for function and conserved in eukaryotes; shuttles between the nucleus and cytoplasm; RNA polymerase II subunit B1 C-terminal domain (CTD) phosphatase that dephosphorylates ’Ser-5’ of the CTD and regulates RNA polymerase II during the transition from ’Ser-5’ to ’Ser-2’ phosphorylation (226 aa)
     
 
  0.790
RPB3
RNA polymerase II third largest subunit B44, part of central core; similar to prokaryotic alpha subunit; DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates. Component of RNA polymerase II which synthesizes mRNA precursors and many functional non-coding RNAs. Pol II is the central component of the basal RNA polymerase II transcription machinery. It is composed of mobile elements that move relative to each other. RPB3 is part of the core element with the central large cleft and the clamp element that moves to [...] (318 aa)
     
 
  0.767
RPB4
RNA polymerase II subunit B32; forms two subunit dissociable complex with Rpb7p; involved in recruitment of 3’-end processing factors to transcribing RNA polymerase II complex and in export of mRNA to cytoplasm under stress conditions; also involved /.../anslation initiation; DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates. Component of RNA polymerase II which synthesizes mRNA precursors and many functional non-coding RNAs. Pol II is the central component of the basal RNA polymerase II transcription mach [...] (221 aa)
       
 
  0.737
Your Current Organism:
Saccharomyces cerevisiae
NCBI taxonomy Id: 4932
Other names: Candida robusta, Pachytichospora, S. cerevisiae, Saccharomyces, Saccharomyces capensis, Saccharomyces cerevisiae, Saccharomyces italicus, Saccharomyces oviformis, Saccharomyces uvarum var. melibiosus, lager beer yeast, yeast
Server load: low (8%) [HD]