XRS2 protein (Saccharomyces cerevisiae) - STRING interaction network
"XRS2" - Protein required for DNA repair in Saccharomyces cerevisiae
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
protein homology
Your Input:
Gene Fusion
XRS2Protein required for DNA repair; component of the Mre11 complex, which is involved in double strand breaks, meiotic recombination, telomere maintenance, and checkpoint signaling; During meiosis is involved in homologous recombination and during vegetative growth it is necessary for DNA repair. It probably regulates the 5’-3’ exonuclease degradation of double strand breaks either at the initiation stage or a later stage (854 aa)    
Predicted Functional Partners:
Subunit of a complex with Rad50p and Xrs2p (MRX complex) that functions in repair of DNA double-strand breaks and in telomere stability, exhibits nuclease activity that appears to be required for MRX function; widely conserved; Involved in DNA double-strand break repair (DSBR). Possesses single-strand endonuclease activity and double-strand- specific 3’-5’ exonuclease activity. Also involved in meiotic DSB processing (692 aa)
Subunit of MRX complex, with Mre11p and Xrs2p, involved in processing double-strand DNA breaks in vegetative cells, initiation of meiotic DSBs, telomere maintenance, and nonhomologous end joining; Involved in DNA double-strand break repair (DSBR). The rad50/mre11 complex possesses single-strand endonuclease activity and ATP-dependent double-strand-specific exonuclease activity. Rad50 provides ATP-dependent control of mre11 by unwinding and/or repositioning DNA ends into the mre11 active site (1312 aa)
Endonuclease that processes hairpin DNA structures with the MRX complex; involved in meiotic and mitotic double-strand break repair; phosphorylated in response to DNA damage and required for normal resistance to DNA-damaging agents; Endonuclease that cooperates with the MRX complex in processing meiotic and mitotic double-strand breaks by allowing the endonucleolytic removal of SPO11 from the break sites and ensuring both resection and intrachromosomal association of the broken ends. Required for proper recovery from checkpoint-mediated cell cycle arrest after DNA damage. MRX complex a [...] (345 aa)
Meiosis-specific protein that initiates meiotic recombination by catalyzing the formation of double-strand breaks in DNA via a transesterification reaction; required for homologous chromosome pairing and synaptonemal complex formation; Required for meiotic recombination. Mediates DNA cleavage that forms the double-strand breaks (DSB) that initiate meiotic recombination. The action of SPO11 is important in setting off a regulatory chain of events encompassing 5’ to 3’ resection. When there are no SPO11-DSBs, resection of a site specific VDE-DSB takes place but it is faster than in wild- [...] (398 aa)
Pre-mRNA splicing factor, important for catalytic step II of pre-mRNA splicing and plays a role in cell cycle progression; required for DNA synthesis during mitosis and meiosis; has WD repeats; May function in the second step of pre-mRNA splicing. Regulatory protein involved in replication and mitotic spindle formation and/or maintenance. Required for initiation and completion of S-phase and for initiation and completion of DNA replication. Might be required for the maintenance of microtubules. Essential only at elevated temperatures (455 aa)
Protein required for optimal translation under nutrient stress; perturbs association of Yef3p with ribosomes; involved in TOR signaling; binds G4 quadruplex and purine motif triplex nucleic acid; helps maintain telomere structure; Binds specifically G4 quadruplex (these are four- stranded right-handed helices, stabilized by guanine base quartets) and purine motif triplex (characterized by a third, antiparallel purine-rich DNA strand located within the major groove of a homopurine stretch of duplex DNA) nucleic acid structures. These structures may be present at telomeres or in rRNAs. A [...] (273 aa)
Splicing factor associated with the spliceosome; contains a U-box, a motif found in a class of ubiquitin ligases, and a WD40 domain; Probable ubiquitin-protein ligase involved in pre-mRNA splicing. Acts as a central component of the NTC complex (or PRP19-associated complex) that associates to the spliceosome to mediate conformational rearrangement or to stabilize the structure of the spliceosome after U4 snRNA dissociation, which leads to spliceosome maturation. It is also probably involved in DNA repair (503 aa)
Protein required for pre-mRNA splicing; associates with the spliceosome and interacts with splicing factors Prp22p and Prp46p; orthologous to human transcriptional coactivator SKIP and can activate transcription of a reporter gene; Involved in pre-mRNA splicing. Associated with the spliceosome throughout the splicing reactions, until after the second catalytic step (379 aa)
Protein kinase primarily involved in telomere length regulation; contributes to cell cycle checkpoint control in response to DNA damage; functionally redundant with Mec1p; homolog of human ataxia telangiectasia (ATM) gene; Serine/threonine protein kinase which activates checkpoint signaling upon genotoxic stresses such as ionizing radiation (IR), ultraviolet light (UV), or DNA replication stalling, thereby acting as a DNA damage sensor. Recognizes the substrate consensus sequence [ST]-Q. Recruited by the MRX-complex to sites of DNA lesions immediately after damage to initiate non- homo [...] (2787 aa)
Component of the DNA ligase IV complex that mediates nonhomologous end joining in DNA double-strand break repair; physically interacts with Dnl4p and Nej1p; homologous to mammalian XRCC4 protein; Stabilizes DNL4. Involved in non-homologous repair of DNA double-strand breaks (421 aa)
Your Current Organism:
Saccharomyces cerevisiae
NCBI taxonomy Id: 4932
Other names: Candida robusta, Pachytichospora, S. cerevisiae, Saccharomyces, Saccharomyces capensis, Saccharomyces cerevisiae, Saccharomyces italicus, Saccharomyces oviformis, Saccharomyces uvarum var. melibiosus, lager beer yeast, yeast
Server load: low (10%) [HD]