STRINGSTRING
URH1 protein (Saccharomyces cerevisiae) - STRING interaction network
"URH1" - Uridine nucleosidase (uridine-cytidine N-ribohydrolase), cleaves N-glycosidic bonds in nucleosides in Saccharomyces cerevisiae
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
URH1Uridine nucleosidase (uridine-cytidine N-ribohydrolase), cleaves N-glycosidic bonds in nucleosides; involved in the pyrimidine salvage and nicotinamide riboside salvage pathways; Also acts on cytidine (340 aa)    
Predicted Functional Partners:
PNP1
Purine nucleoside phosphorylase, specifically metabolizes inosine and guanosine nucleosides; involved in the nicotinamide riboside salvage pathway; The purine nucleoside phosphorylases catalyze the phosphorolytic breakdown of the N-glycosidic bond in the beta- (deoxy)ribonucleoside molecules, with the formation of the corresponding free purine bases and pentose-1-phosphate. Cleaves guanosine and inosine (By similarity) (311 aa)
     
  0.997
URK1
Uridine/cytidine kinase, component of the pyrimidine ribonucleotide salvage pathway that converts uridine into UMP and cytidine into CMP; involved in the pyrimidine deoxyribonucleotide salvage pathway, converting deoxycytidine into dCMP; Catalyzes the conversion of uridine into UMP and cytidine into CMP in the pyrimidine salvage pathway (501 aa)
     
 
  0.997
NRK1
Nicotinamide riboside kinase, catalyzes the phosphorylation of nicotinamide riboside and nicotinic acid riboside in salvage pathways for NAD+ biosynthesis; Catalyzes the phosphorylation of nicotinamide riboside (NR) and nicotinic acid riboside (NaR) to form nicotinamide mononucleotide (NMN) and nicotinic acid mononucleotide (NaMN) (240 aa)
       
  0.995
PNC1
Nicotinamidase that converts nicotinamide to nicotinic acid as part of the NAD(+) salvage pathway, required for life span extension by calorie restriction; PNC1 expression responds to all known stimuli that extend replicative life span; Catalyzes the deamidation of nicotinamide, an early step in the NAD(+) salvage pathway. Positively regulates SIR2-mediated silencing and longevity by preventing the accumulation of intracellular nicotinamide, an inhibitor of SIR2, during times of stress. Acts also on nicotinyl hydroxamate (216 aa)
       
  0.988
CDD1
Cytidine deaminase; catalyzes the modification of cytidine to uridine in vitro but native RNA substrates have not been identified, localizes to both the nucleus and cytoplasm; This enzyme scavenges exogenous and endogenous cytidine and 2’-deoxycytidine for UMP synthesis (142 aa)
   
 
  0.985
SDT1
Pyrimidine nucleotidase; overexpression suppresses the 6-AU sensitivity of transcription elongation factor S-II, as well as resistance to other pyrimidine derivatives; Could be an enzyme that inactivates 6-azauracil by modifying it (280 aa)
         
  0.984
FUR1
Uracil phosphoribosyltransferase, synthesizes UMP from uracil; involved in the pyrimidine salvage pathway; Catalyzes the conversion of uracil and 5-phospho-alpha- D-ribose 1-diphosphate (PRPP) to UMP and diphosphate (216 aa)
     
 
  0.982
FCY1
Cytosine deaminase, zinc metalloenzyme that catalyzes the hydrolytic deamination of cytosine to uracil; of biomedical interest because it also catalyzes the deamination of 5-fluorocytosine (5FC) to form anticancer drug 5-fluorouracil (5FU); Converts cytosine to uracil or 5-methylcytosine to thymine by deaminating carbon number 4 (158 aa)
         
  0.979
ISN1
Inosine 5’-monophosphate (IMP)-specific 5’-nucleotidase, catalyzes the breakdown of IMP to inosine, does not show similarity to known 5’-nucleotidases from other organisms; IMP-specific 5’-nucleotidase involved in IMP (inosine 5’-phosphate) degradation (450 aa)
     
 
  0.968
NPT1
Nicotinate phosphoribosyltransferase, acts in the salvage pathway of NAD+ biosynthesis; required for silencing at rDNA and telomeres and has a role in silencing at mating-type loci; localized to the nucleus; Essential for growth under anaerobic conditions (429 aa)
         
  0.966
Your Current Organism:
Saccharomyces cerevisiae
NCBI taxonomy Id: 4932
Other names: Candida robusta, Pachytichospora, S. cerevisiae, Saccharomyces, Saccharomyces capensis, Saccharomyces cerevisiae, Saccharomyces italicus, Saccharomyces oviformis, Saccharomyces uvarum var. melibiosus, lager beer yeast, yeast
Server load: low (8%) [HD]