STRINGSTRING
APT2 protein (Saccharomyces cerevisiae) - STRING interaction network
"APT2" - Apparent pseudogene, not transcribed or translated under normal conditions in Saccharomyces cerevisiae
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
APT2Apparent pseudogene, not transcribed or translated under normal conditions; encodes a protein with similarity to adenine phosphoribosyltransferase, but artificially expressed protein exhibits no enzymatic activity; Catalyzes a salvage reaction resulting in the formation of AMP, that is energically less costly than de novo synthesis. May lack catalytic activity (181 aa)    
Predicted Functional Partners:
AAH1
Adenine deaminase (adenine aminohydrolase), converts adenine to hypoxanthine; involved in purine salvage; transcriptionally regulated by nutrient levels and growth phase; Aah1p degraded upon entry into quiescence via SCF and the proteasome; Catalyzes the hydrolytic deamination of adenine to hypoxanthine. Plays an important role in the purine salvage pathway and in nitrogen catabolism. Also exhibits a low activity towards N(6)-substituted adenines that are commonly known as the plant hormones cytokinins (347 aa)
       
  0.996
ADE13
Adenylosuccinate lyase, catalyzes two steps in the ’de novo’ purine nucleotide biosynthetic pathway; expression is repressed by adenine and activated by Bas1p and Pho2p; mutations in human ortholog ADSL cause adenylosuccinase deficiency (482 aa)
   
  0.991
GUA1
GMP synthase; highly conserved enzyme that catalyzes the second step in the biosynthesis of GMP from inosine 5’-phosphate (IMP); transcription is not subject to regulation by guanine but is negatively regulated by nutrient starvation; reduction-of-f /.../n mutation gua1-G388D causes changes in cellular guanine nucleotide pools, defects in general protein synthesis, and impaired translation of GCN4 mRNA (525 aa)
   
  0.984
PNP1
Purine nucleoside phosphorylase, specifically metabolizes inosine and guanosine nucleosides; involved in the nicotinamide riboside salvage pathway; The purine nucleoside phosphorylases catalyze the phosphorolytic breakdown of the N-glycosidic bond in the beta- (deoxy)ribonucleoside molecules, with the formation of the corresponding free purine bases and pentose-1-phosphate. Cleaves guanosine and inosine (By similarity) (311 aa)
       
  0.978
APT1
Adenine phosphoribosyltransferase, catalyzes the formation of AMP from adenine and 5-phosphoribosylpyrophosphate; involved in the salvage pathway of purine nucleotide biosynthesis; Catalyzes a salvage reaction resulting in the formation of AMP, that is energically less costly than de novo synthesis (187 aa)
   
 
0.974
GUK1
Guanylate kinase, converts GMP to GDP; required for growth and mannose outer chain elongation of cell wall N-linked glycoproteins; Essential for recycling GMP and indirectly, cGMP (187 aa)
   
 
  0.972
ADK2
Mitochondrial adenylate kinase, catalyzes the reversible synthesis of GTP and AMP from GDP and ADP; may serve as a back-up for synthesizing GTP or ADP depending on metabolic conditions; 3’ sequence of ADK2 varies with strain background; Catalyzes the reversible transfer of the terminal phosphate group between ATP and AMP. Plays an important role in cellular energy homeostasis and in adenine nucleotide metabolism. Adenylate kinase activity is critical for regulation of the phosphate utilization and the AMP de novo biosynthesis pathways (225 aa)
   
 
  0.972
ADK1
Adenylate kinase, required for purine metabolism; localized to the cytoplasm and the mitochondria; lacks cleavable signal sequence; Catalyzes the reversible transfer of the terminal phosphate group between ATP and AMP. Plays an important role in cellular energy homeostasis and in adenine nucleotide metabolism. Adenylate kinase activity is critical for regulation of the phosphate utilization and the AMP de novo biosynthesis pathways (222 aa)
   
 
  0.972
AMD1
AMP deaminase, tetrameric enzyme that catalyzes the deamination of AMP to form IMP and ammonia; may be involved in regulation of intracellular adenine nucleotide pools; AMP deaminase plays a critical role in energy metabolism (810 aa)
       
  0.972
ADO1
Adenosine kinase, required for the utilization of S-adenosylmethionine (AdoMet); may be involved in recycling adenosine produced through the methyl cycle; ATP dependent phosphorylation of adenosine and other related nucleoside analogs to monophosphate derivatives. ADO1 does not play a major role in adenine utilization in yeast. Its physiological role could primarily be to recycle adenosine produced by the methyl cycle (340 aa)
       
  0.958
Your Current Organism:
Saccharomyces cerevisiae
NCBI taxonomy Id: 4932
Other names: Candida robusta, Pachytichospora, S. cerevisiae, Saccharomyces, Saccharomyces capensis, Saccharomyces cerevisiae, Saccharomyces italicus, Saccharomyces oviformis, Saccharomyces uvarum var. melibiosus, lager beer yeast, yeast
Server load: low (7%) [HD]