STRINGSTRING
SNU13 protein (Saccharomyces cerevisiae) - STRING interaction network
"SNU13" - RNA binding protein, part of U3 snoRNP involved in rRNA processing, part of U4/U6-U5 tri-snRNP involved in mRNA splicing, similar to human 15.5K protein in Saccharomyces cerevisiae
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
SNU13RNA binding protein, part of U3 snoRNP involved in rRNA processing, part of U4/U6-U5 tri-snRNP involved in mRNA splicing, similar to human 15.5K protein; Common component of the spliceosome and rRNA processing machinery. In association with the spliceosomal U4/U6.U5 tri-snRNP particle, required for splicing of pre-mRNA. In association with box C/D snoRNPs, required for processing of pre-ribosomal RNA (rRNA) and site-specific 2’-O-methylation of substrate RNAs. Essential for the accumulation and stability of U4 snRNA, U6 snRNA, and box C/D snoRNAs (126 aa)    
Predicted Functional Partners:
NOP58
Protein involved in pre-rRNA processing, 18S rRNA synthesis, and snoRNA synthesis; component of the small subunit processome complex, which is required for processing of pre-18S rRNA; Required for pre-18S rRNA processing. May bind microtubules (511 aa)
     
  0.999
NOP1
Nucleolar protein, component of the small subunit processome complex, which is required for processing of pre-18S rRNA; has similarity to mammalian fibrillarin; S-adenosyl-L-methionine-dependent methyltransferase that has the ability to methylate both RNAs and proteins. Involved in pre-rRNA processing by catalyzing the site-specific 2’-hydroxyl methylation of ribose moieties in pre-ribosomal RNA (PubMed-1825809). Site specificity is provided by a guide RNA that base pairs with the substrate. Methylation occurs at a characteristic distance from the sequence involved in base pairing with [...] (327 aa)
     
  0.999
NOP56
Essential evolutionarily-conserved nucleolar protein component of the box C/D snoRNP complexes that direct 2’-O-methylation of pre-rRNA during its maturation; overexpression causes spindle orientation defects; Required for 60S ribosomal subunit synthesis (504 aa)
     
  0.999
SMB1
Core Sm protein Sm B; part of heteroheptameric complex (with Smd1p, Smd2p, Smd3p, Sme1p, Smx3p, and Smx2p) that is part of the spliceosomal U1, U2, U4, and U5 snRNPs; homolog of human Sm B and Sm B’; Involved in pre-mRNA splicing. Binds snRNA U1, U2, U4 and U5 which contain a highly conserved structural motif called the Sm binding site (196 aa)
   
  0.999
SMD3
Core Sm protein Sm D3; part of heteroheptameric complex (with Smb1p, Smd1p, Smd2p, Sme1p, Smx3p, and Smx2p) that is part of the spliceosomal U1, U2, U4, and U5 snRNPs; homolog of human Sm D3; Involved in pre-mRNA splicing. Binds snRNA U1, U2, U4 and U5 which contain a highly conserved structural motif called the Sm binding site. Also binds telomerase RNA and is required for its accumulation (101 aa)
   
  0.999
RPS7A
Protein component of the small (40S) ribosomal subunit, nearly identical to Rps7Bp; interacts with Kti11p; deletion causes hypersensitivity to zymocin; has similarity to rat S7 and Xenopus S8 ribosomal proteins; Involved in nucleolar processing of pre-18S ribosomal RNA and ribosome assembly (190 aa)
     
  0.999
RPS16B
Protein component of the small (40S) ribosomal subunit; identical to Rps16Ap and has similarity to E. coli S9 and rat S16 ribosomal proteins (143 aa)
   
 
  0.999
SME1
Core Sm protein Sm E; part of heteroheptameric complex (with Smb1p, Smd1p, Smd2p, Smd3p, Smx3p, and Smx2p) that is part of the spliceosomal U1, U2, U4, and U5 snRNPs; homolog of human Sm E; Involved in pre-mRNA splicing. Binds and is required for the stability of snRNA U1, U2, U4 and U5 which contain a highly conserved structural motif called the Sm binding site. Involved in cap modification (94 aa)
   
  0.999
DIB1
17-kDa component of the U4/U6aU5 tri-snRNP, plays an essential role in pre-mRNA splicing, orthologue of hDIM1, the human U5-specific 15-kDa protein; Essential role in pre-mRNA splicing. Also essential for entry into mitosis (G2/M progression) as well as for chromosome segregation during mitosis (143 aa)
     
  0.998
SMD2
Core Sm protein Sm D2; part of heteroheptameric complex (with Smb1p, Smd1p, Smd3p, Sme1p, Smx3p, and Smx2p) that is part of the spliceosomal U1, U2, U4, and U5 snRNPs; homolog of human Sm D2; Involved in pre-mRNA splicing. Binds snRNA U1, U2, U4 and U5 which contain a highly conserved structural motif called the Sm binding site (110 aa)
   
  0.998
Your Current Organism:
Saccharomyces cerevisiae
NCBI taxonomy Id: 4932
Other names: Candida robusta, Pachytichospora, S. cerevisiae, Saccharomyces, Saccharomyces capensis, Saccharomyces cerevisiae, Saccharomyces italicus, Saccharomyces oviformis, Saccharomyces uvarum var. melibiosus, lager beer yeast, yeast
Server load: low (17%) [HD]