STRINGSTRING
CAN1 protein (Saccharomyces cerevisiae) - STRING interaction network
"CAN1" - Plasma membrane arginine permease, requires phosphatidyl ethanolamine in Saccharomyces cerevisiae
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
CAN1Plasma membrane arginine permease, requires phosphatidyl ethanolamine (PE) for localization, exclusively associated with lipid rafts; mutation confers canavanine resistance; High-affinity permease for arginine (590 aa)    
Predicted Functional Partners:
ADE2
Phosphoribosylaminoimidazole carboxylase, catalyzes a step in the ’de novo’ purine nucleotide biosynthetic pathway; red pigment accumulates in mutant cells deprived of adenine (571 aa)
           
  0.951
URA3
Orotidine-5’-phosphate (OMP) decarboxylase, catalyzes the sixth enzymatic step in the de novo biosynthesis of pyrimidines, converting OMP into uridine monophosphate (UMP); converts 5-FOA into 5-fluorouracil, a toxic compound (267 aa)
         
  0.929
LEU2
Beta-isopropylmalate dehydrogenase (IMDH), catalyzes the third step in the leucine biosynthesis pathway; Catalyzes the oxidation of 3-carboxy-2-hydroxy-4- methylpentanoate (3-isopropylmalate) to 3-carboxy-4-methyl-2- oxopentanoate. The product decarboxylates to 4-methyl-2 oxopentanoate (364 aa)
         
  0.928
HIS3
Imidazoleglycerol-phosphate dehydratase, catalyzes the sixth step in histidine biosynthesis; mutations cause histidine auxotrophy and sensitivity to Cu, Co, and Ni salts; transcription is regulated by general amino acid control via Gcn4p (220 aa)
           
  0.925
TRP1
Phosphoribosylanthranilate isomerase that catalyzes the third step in tryptophan biosynthesis; in 2004, the sequence of TRP1 from strain S228C was updated by changing the previously annotated internal STOP (TAA) to serine (TCA) (224 aa)
           
  0.924
HIS4
Multifunctional enzyme containing phosphoribosyl-ATP pyrophosphatase, phosphoribosyl-AMP cyclohydrolase, and histidinol dehydrogenase activities; catalyzes the second, third, ninth and tenth steps in histidine biosynthesis (799 aa)
     
 
  0.890
HOM3
Aspartate kinase (L-aspartate 4-P-transferase); cytoplasmic enzyme that catalyzes the first step in the common pathway for methionine and threonine biosynthesis; expression regulated by Gcn4p and the general control of amino acid synthesis (527 aa)
     
 
  0.878
LYS2
Alpha aminoadipate reductase, catalyzes the reduction of alpha-aminoadipate to alpha-aminoadipate 6-semialdehyde, which is the fifth step in biosynthesis of lysine; activation requires posttranslational phosphopantetheinylation by Lys5p; Catalyzes the activation of alpha-aminoadipate by ATP- dependent adenylation and the reduction of activated alpha- aminoadipate by NADPH. The activated alpha-aminoadipate is bound to the phosphopantheinyl group of the enzyme itself before it is reduced to (S)-2-amino-6-oxohexanoate (1392 aa)
           
  0.850
DUR1,2
Urea amidolyase, contains both urea carboxylase and allophanate hydrolase activities, degrades urea to CO2 and NH3; expression sensitive to nitrogen catabolite repression and induced by allophanate, an intermediate in allantoin degradation; Hydrolysis of urea to ammonia and CO(2) (1835 aa)
   
   
  0.818
HIS7
Imidazole glycerol phosphate synthase; glutamine amidotransferase-cyclase that catalyzes the fifth step of histidine biosynthesis and also produces 5-aminoimidazole-4-carboxamide ribotide (AICAR), a purine precursor; IGPS catalyzes the conversion of PRFAR and glutamine to IGP, AICAR and glutamate. The glutamine amidotransferase domain provides the ammonia necessary to the cyclase domain to produce IGP and AICAR from PRFAR (552 aa)
           
  0.801
Your Current Organism:
Saccharomyces cerevisiae
NCBI taxonomy Id: 4932
Other names: Candida robusta, Pachytichospora, S. cerevisiae, Saccharomyces, Saccharomyces capensis, Saccharomyces cerevisiae, Saccharomyces italicus, Saccharomyces oviformis, Saccharomyces uvarum var. melibiosus, lager beer yeast, yeast
Server load: low (2%) [HD]