STRINGSTRING
YND1 protein (Saccharomyces cerevisiae) - STRING interaction network
"YND1" - Apyrase with wide substrate specificity, helps prevent inhibition of glycosylation by hydrolyzing nucleoside tri- and diphosphates that inhibit glycotransferases in Saccharomyces cerevisiae
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
YND1Apyrase with wide substrate specificity, helps prevent inhibition of glycosylation by hydrolyzing nucleoside tri- and diphosphates that inhibit glycotransferases; partially redundant with Gda1p; mediates adenovirus E4orf4-induced toxicity; Catalyzes the hydrolysis of phosphoanhydride bonds of nucleoside tri- and di-phosphates. Has equal high activity toward ADP/ATP, GDP/GTP, and UDP/UTP and approximately 50% less toward CDP/CTP and thiamine pyrophosphate. Has no activity toward GMP. Required for Golgi glycosylation and cell wall integrity. Together with CDC55, required for adenovirus E [...] (630 aa)    
Predicted Functional Partners:
URA3
Orotidine-5’-phosphate (OMP) decarboxylase, catalyzes the sixth enzymatic step in the de novo biosynthesis of pyrimidines, converting OMP into uridine monophosphate (UMP); converts 5-FOA into 5-fluorouracil, a toxic compound (267 aa)
         
  0.946
FAP7
Essential NTPase required for small ribosome subunit synthesis, mediates processing of the 20S pre-rRNA at site D in the cytoplasm but associates only transiently with 43S preribosomes via Rps14p, may be the endonuclease for site D; Broad-specificity nucleoside monophosphate (NMP) kinase that catalyzes the reversible transfer of the terminal phosphate group between nucleoside triphosphates and monophosphates. Has also ATPase activity (By similarity). Involved in 18S rRNA maturation. Required for cleavage of the 20S pre-rRNA at site D in the cytoplasm. Involved in oxidative stress respo [...] (197 aa)
         
  0.946
ADK1
Adenylate kinase, required for purine metabolism; localized to the cytoplasm and the mitochondria; lacks cleavable signal sequence; Catalyzes the reversible transfer of the terminal phosphate group between ATP and AMP. Plays an important role in cellular energy homeostasis and in adenine nucleotide metabolism. Adenylate kinase activity is critical for regulation of the phosphate utilization and the AMP de novo biosynthesis pathways (222 aa)
         
  0.938
ADK2
Mitochondrial adenylate kinase, catalyzes the reversible synthesis of GTP and AMP from GDP and ADP; may serve as a back-up for synthesizing GTP or ADP depending on metabolic conditions; 3’ sequence of ADK2 varies with strain background; Catalyzes the reversible transfer of the terminal phosphate group between ATP and AMP. Plays an important role in cellular energy homeostasis and in adenine nucleotide metabolism. Adenylate kinase activity is critical for regulation of the phosphate utilization and the AMP de novo biosynthesis pathways (225 aa)
         
  0.934
CYR1
Adenylate cyclase, required for cAMP production and cAMP-dependent protein kinase signaling; the cAMP pathway controls a variety of cellular processes, including metabolism, cell cycle, stress response, stationary phase, and sporulation; Plays essential roles in regulation of cellular metabolism by catalyzing the synthesis of a second messenger, cAMP (2026 aa)
         
  0.920
ADO1
Adenosine kinase, required for the utilization of S-adenosylmethionine (AdoMet); may be involved in recycling adenosine produced through the methyl cycle; ATP dependent phosphorylation of adenosine and other related nucleoside analogs to monophosphate derivatives. ADO1 does not play a major role in adenine utilization in yeast. Its physiological role could primarily be to recycle adenosine produced by the methyl cycle (340 aa)
         
  0.914
YNK1
Nucleoside diphosphate kinase, catalyzes the transfer of gamma phosphates from nucleoside triphosphates, usually ATP, to nucleoside diphosphates by a mechanism that involves formation of an autophosphorylated enzyme intermediate; Major role in the synthesis of nucleoside triphosphates other than ATP. The ATP gamma phosphate is transferred to the NDP beta phosphate via a ping-pong mechanism, using a phosphorylated active-site intermediate. Required for repair of UV radiation- and etoposide-induced DNA damage (153 aa)
         
  0.907
HAM1
Conserved protein with deoxyribonucleoside triphosphate pyrophosphohydrolase activity, mediates exclusion of noncanonical purines from deoxyribonucleoside triphosphate pools; mutant is sensitive to the base analog 6-N-hydroxylaminopurine; Pyrophosphatase that hydrolyzes the non-canonical purine nucleotides inosine triphosphate (ITP), deoxyinosine triphosphate (dITP) as well as 2’-deoxy-N-6-hydroxylaminopurine triposphate (dHAPTP) and 5-bromodeoxyuridine 5’-triphosphate (BrdUTP) to their respective monophosphate derivatives. Xanthosine 5’-triphosphate (XTP) is also a potential substrate [...] (197 aa)
     
 
  0.905
ADE17
Enzyme of ’de novo’ purine biosynthesis containing both 5-aminoimidazole-4-carboxamide ribonucleotide transformylase and inosine monophosphate cyclohydrolase activities, isozyme of Ade16p; ade16 ade17 mutants require adenine and histidine (592 aa)
         
  0.904
ADE16
Enzyme of ’de novo’ purine biosynthesis containing both 5-aminoimidazole-4-carboxamide ribonucleotide transformylase and inosine monophosphate cyclohydrolase activities, isozyme of Ade17p; ade16 ade17 mutants require adenine and histidine (591 aa)
         
  0.904
Your Current Organism:
Saccharomyces cerevisiae
NCBI taxonomy Id: 4932
Other names: Candida robusta, Pachytichospora, S. cerevisiae, Saccharomyces, Saccharomyces capensis, Saccharomyces cerevisiae, Saccharomyces italicus, Saccharomyces oviformis, Saccharomyces uvarum var. melibiosus, lager beer yeast, yeast
Server load: low (6%) [HD]