STRINGSTRING
MXR1 protein (Saccharomyces cerevisiae) - STRING interaction network
"MXR1" - Methionine-S-sulfoxide reductase, involved in the response to oxidative stress in Saccharomyces cerevisiae
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
MXR1Methionine-S-sulfoxide reductase, involved in the response to oxidative stress; protects iron-sulfur clusters from oxidative inactivation along with MXR2; involved in the regulation of lifespan; Has an important function as a repair enzyme for proteins that have been inactivated by oxidation. Catalyzes the reversible oxidation-reduction of methionine sulfoxide in proteins to methionine. Also able to reduce dimethyl sulfoxide (DMSO) as well, with DMS as the product (184 aa)    
Predicted Functional Partners:
MXR2
Methionine-R-sulfoxide reductase, involved in the response to oxidative stress; protects iron-sulfur clusters from oxidative inactivation along with MXR1; involved in the regulation of lifespan; Methionine-R-sulfoxide reductase which catalyzes the reduction of methionine sulfoxide (MetSO) to methionine in proteins. Plays a protective role against oxidative stress by restoring activity to proteins that have been inactivated by methionine oxidation. Protects iron-sulfur clusters from oxidative inactivation along with MXR1. Involved in the regulation of lifespan (168 aa)
 
  0.999
TRX2
Cytoplasmic thioredoxin isoenzyme of the thioredoxin system which protects cells against oxidative and reductive stress, forms LMA1 complex with Pbi2p, acts as a cofactor for Tsa1p, required for ER-Golgi transport and vacuole inheritance; Participates as a hydrogen donor in redox reactions through the reversible oxidation of its active center dithiol to a disulfide, accompanied by the transfer of 2 electrons and 2 protons. It is involved in many cellular processes, including deoxyribonucleotide synthesis, repair of oxidatively damaged proteins, protein folding, sulfur metabolism, and r [...] (104 aa)
   
  0.994
TRX1
Cytoplasmic thioredoxin isoenzyme of the thioredoxin system which protects cells against oxidative and reductive stress, forms LMA1 complex with Pbi2p, acts as a cofactor for Tsa1p, required for ER-Golgi transport and vacuole inheritance; Participates as a hydrogen donor in redox reactions through the reversible oxidation of its active center dithiol to a disulfide, accompanied by the transfer of 2 electrons and 2 protons. It is involved in many cellular processes, including deoxyribonucleotide synthesis, repair of oxidatively damaged proteins, protein folding, sulfur metabolism, and r [...] (103 aa)
     
  0.970
STR3
Peroxisomal cystathionine beta-lyase, converts cystathionine into homocysteine; may be redox regulated by Gto1p (465 aa)
   
 
  0.924
YKL069W
Methionine-R-sulfoxide reductase, reduces the R enantiomer of free Met-SO, in contrast to Ycl033Cp which reduces Met-R-SO in a peptide linkage; has a role in protection against oxidative stress; Catalyzes the reversible oxidation-reduction of the R- enantiomer of free methionine sulfoxide to methionine. Does not act on S-enantiomer of free methionine sulfoxide or R-enantiomer of dabsylated methionine sulfoxide. Involved in protection against oxidative stress (180 aa)
     
 
  0.906
STR2
Cystathionine gamma-synthase, converts cysteine into cystathionine; Catalyzes the formation of L-cystathionine from O- succinyl-L-homoserine (OSHS) and L-cysteine, via a gamma- replacement reaction. In the absence of thiol, catalyzes gamma- elimination to form 2-oxobutanoate, succinate and ammonia (By similarity) (639 aa)
   
 
  0.888
CYS3
Cystathionine gamma-lyase, catalyzes one of the two reactions involved in the transsulfuration pathway that yields cysteine from homocysteine with the intermediary formation of cystathionine (394 aa)
   
 
  0.884
YLL058W
Putative protein of unknown function with similarity to Str2p, which is a cystathionine gamma-synthase important in sulfur metabolism; YLL058W is not an essential gene; Catalyzes the formation of L-cystathionine from O- succinyl-L-homoserine (OSHS) and L-cysteine, via a gamma- replacement reaction. In the absence of thiol, catalyzes gamma- elimination to form 2-oxobutanoate, succinate and ammonia (By similarity) (575 aa)
   
 
  0.874
YHR112C
Protein of unknown function; localizes to the cytoplasm and nucleus; overexpression affects protein trafficking through the endocytic pathway (378 aa)
   
 
  0.847
SAM1
S-adenosylmethionine synthetase, catalyzes transfer of the adenosyl group of ATP to the sulfur atom of methionine; one of two differentially regulated isozymes (Sam1p and Sam2p); Catalyzes the formation of S-adenosylmethionine from methionine and ATP (382 aa)
       
 
  0.835
Your Current Organism:
Saccharomyces cerevisiae
NCBI taxonomy Id: 4932
Other names: Candida robusta, Pachytichospora, S. cerevisiae, Saccharomyces, Saccharomyces capensis, Saccharomyces cerevisiae, Saccharomyces italicus, Saccharomyces oviformis, Saccharomyces uvarum var. melibiosus, lager beer yeast, yeast
Server load: low (6%) [HD]