ICP55 protein (Saccharomyces cerevisiae) - STRING interaction network
"ICP55" - Mitochondrial aminopeptidase in Saccharomyces cerevisiae
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
protein homology
Your Input:
Gene Fusion
ICP55Mitochondrial aminopeptidase; cleaves the N termini of at least 38 imported proteins after cleavage by the mitochondrial processing peptidase (MPP), thereby increasing their stability; member of the aminopeptidase P family; Aminopeptidase which cleaves preprotein intermediates that carry destabilizing N-ter amino acid residues after the mitochondrial processing peptidase (MPP) cleavage site and is thus critical for stabilization of the mitochondrial proteome (511 aa)    
Predicted Functional Partners:
Vacuolar alpha mannosidase, involved in free oligosaccharide (fOS) degradation; delivered to the vacuole in a novel pathway separate from the secretory pathway; Degrades free oligosaccharides in the vacuole (1083 aa)
Vacuolar aminopeptidase yscI; zinc metalloproteinase that belongs to the peptidase family M18; often used as a marker protein in studies of autophagy and cytosol to vacuole targeting (CVT) pathway; Resident vacuolar enzyme that catalyzes the removal of amino acids from the N-terminus of peptides and proteins. Also acts as the major cargo protein of the cytoplasm-to-vacuole targeting (Cvt) pathway. The precursor form of aminopeptidase 1 (prApe1) assembles into dodecamers and the propeptide mediates the aggregation of dodecamers into higher multimers. The multimers are then recognized vi [...] (514 aa)
Vacuolar aspartyl protease (proteinase A), required for the posttranslational precursor maturation of vacuolar proteinases; important for protein turnover after oxidative damage; synthesized as a zymogen, self-activates; Aspartyl protease implicated in the post-translational regulation of S.cerevisiae vacuolar proteinases. Acts on YSCB, on YSCY and on itself (405 aa)
Vacuolar carboxypeptidase Y (proteinase C, CPY); broad-specificity C-terminal exopeptidase involved in non-specific protein degradation in the vacuole; member of the serine carboxypeptidase family; Involved in degradation of small peptides. Digests preferentially peptides containing an aliphatic or hydrophobic residue in P1’ position, as well as methionine, leucine or phenylalanine in P1 position of ester substrate (532 aa)
Putative protein of unknown function; green fluorescent protein (GFP)-fusion protein localizes to the cytoplasm; YIR007W is a non-essential gene (764 aa)
Adapter protein for pexophagy and the cytoplasm-to-vacuole targeting (Cvt) pathway; directs receptor-bound cargo to the phagophore assembly site (PAS) for packaging into vesicles; required for recruiting other proteins to the (PAS); Involved in cytoplasm to vacuole transport (Cvt), pexophagy, mitophagy and nucleophagy. Recruits mitochondria for their selective degradation via autophagy (mitophagy) during starvation, through its interaction with ATG32. Works as scaffold proteins that recruit ATG proteins to the pre-autophagosome (PAS), the site of vesicle/autophagosome formation. Requir [...] (1178 aa)
Component of autophagosomes and Cvt vesicles; undergoes conjugation to phosphatidylethanolamine (PE); Atg8p-PE is anchored to membranes, is involved in phagophore expansion, and may mediate membrane fusion during autophagosome formation; Ubiquitin-like modifier involved in cytoplasm to vacuole transport (Cvt) vesicles and autophagosomes formation. With ATG4, mediates the delivery of the vesicles and autophagosomes to the vacuole via the microtubule cytoskeleton. Required for selective autophagic degradation of the nucleus (nucleophagy) as well as for mitophagy which contributes to regu [...] (117 aa)
Urea amidolyase, contains both urea carboxylase and allophanate hydrolase activities, degrades urea to CO2 and NH3; expression sensitive to nitrogen catabolite repression and induced by allophanate, an intermediate in allantoin degradation; Hydrolysis of urea to ammonia and CO(2) (1835 aa)
Methionine aminopeptidase, catalyzes the cotranslational removal of N-terminal methionine from nascent polypeptides; function is partially redundant with that of Map1p; Cotranslationally removes the N-terminal methionine from nascent proteins. The N-terminal methionine is often cleaved when the second residue in the primary sequence is small and uncharged (Met-Ala-, Cys, Gly, Pro, Ser, Thr, or Val). Plays only a minor role in N-terminal methionine removal. Less efficient when the second residue is Val, Gly, Cys or Thr (421 aa)
Dipeptidyl aminopeptidase, Golgi integral membrane protein that cleaves on the carboxyl side of repeating -X-Ala- sequences, required for maturation of alpha factor, transcription is induced by a-factor; Responsible for the proteolytic maturation of the alpha- factor precursor (931 aa)
Your Current Organism:
Saccharomyces cerevisiae
NCBI taxonomy Id: 4932
Other names: Candida robusta, Pachytichospora, S. cerevisiae, Saccharomyces, Saccharomyces capensis, Saccharomyces cerevisiae, Saccharomyces italicus, Saccharomyces oviformis, Saccharomyces uvarum var. melibiosus, lager beer yeast, yeast
Server load: low (3%) [HD]