STRINGSTRING
FAU1 protein (Saccharomyces cerevisiae) - STRING interaction network
"FAU1" - 5,10-methenyltetrahydrofolate synthetase, involved in folic acid biosynthesis in Saccharomyces cerevisiae
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
FAU15,10-methenyltetrahydrofolate synthetase, involved in folic acid biosynthesis; Only enzyme known to utilize 5-formyltetrahydrofolate (folinic acid) as substrate. Contributes to tetrahydrofolate metabolism in an alternative way of folate biosynthesis. May regulate carbon flow through the folate-dependent one-carbon metabolic network that supplies carbon for the biosynthesis of purines, thymidine and amino acids (211 aa)    
Predicted Functional Partners:
ADE3
Cytoplasmic trifunctional enzyme C1-tetrahydrofolate synthase, involved in single carbon metabolism and required for biosynthesis of purines, thymidylate, methionine, and histidine; null mutation causes auxotrophy for adenine and histidine (946 aa)
   
  0.995
MIS1
Mitochondrial C1-tetrahydrofolate synthase, involved in interconversion between different oxidation states of tetrahydrofolate (THF); provides activities of formyl-THF synthetase, methenyl-THF cyclohydrolase, and methylene-THF dehydrogenase (975 aa)
   
 
  0.994
MTD1
NAD-dependent 5,10-methylenetetrahydrafolate dehydrogenase, plays a catalytic role in oxidation of cytoplasmic one-carbon units; expression is regulated by Bas1p and Bas2p, repressed by adenine, and may be induced by inositol and choline; Catalyzes oxidation of cytoplasmic one-carbon units for purine biosynthesis (320 aa)
       
  0.982
ADE8
Phosphoribosyl-glycinamide transformylase, catalyzes a step in the ’de novo’ purine nucleotide biosynthetic pathway (214 aa)
       
  0.935
SHM2
Cytosolic serine hydroxymethyltransferase, converts serine to glycine plus 5,10 methylenetetrahydrofolate; major isoform involved in generating precursors for purine, pyrimidine, amino acid, and lipid biosynthesis; Interconversion of serine and glycine (469 aa)
     
  0.878
YHR180W
Dubious open reading frame unlikely to encode a protein, based on available experimental and comparative sequence data (163 aa)
           
  0.697
SHM1
Mitochondrial serine hydroxymethyltransferase, converts serine to glycine plus 5,10 methylenetetrahydrofolate; involved in generating precursors for purine, pyrimidine, amino acid, and lipid biosynthesis; reverse reaction generates serine; Interconversion of serine and glycine (490 aa)
       
  0.678
ADE16
Enzyme of ’de novo’ purine biosynthesis containing both 5-aminoimidazole-4-carboxamide ribonucleotide transformylase and inosine monophosphate cyclohydrolase activities, isozyme of Ade17p; ade16 ade17 mutants require adenine and histidine (591 aa)
           
  0.637
FOL3
Dihydrofolate synthetase, involved in folic acid biosynthesis; catalyzes the conversion of dihydropteroate to dihydrofolate in folate coenzyme biosynthesis; Glutamate-adding enzyme which catalyzes the binding of the first glutamyl side chain to dihydropteroate. Leads to the de nove synthesis of tetrahydrofolate (427 aa)
         
  0.611
MSF1
Mitochondrial phenylalanyl-tRNA synthetase, active as a monomer, unlike the cytoplasmic subunit which is active as a dimer complexed to a beta subunit dimer; similar to the alpha subunit of E. coli phenylalanyl-tRNA synthetase; Is responsible for the charging of tRNA(Phe) with phenylalanine in mitochondrial translation (469 aa)
   
   
  0.578
Your Current Organism:
Saccharomyces cerevisiae
NCBI taxonomy Id: 4932
Other names: Candida robusta, Pachytichospora, S. cerevisiae, Saccharomyces, Saccharomyces capensis, Saccharomyces cerevisiae, Saccharomyces italicus, Saccharomyces oviformis, Saccharomyces uvarum var. melibiosus, lager beer yeast, yeast
Server load: low (7%) [HD]