STRINGSTRING
BST1 protein (Saccharomyces cerevisiae) - STRING interaction network
"BST1" - GPI inositol deacylase of the ER that negatively regulates COPII vesicle formation, prevents production of vesicles with defective subunits, required for proper discrimination between resident ER proteins and Golgi-bound cargo molecules in Saccharomyces cerevisiae
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
BST1GPI inositol deacylase of the ER that negatively regulates COPII vesicle formation, prevents production of vesicles with defective subunits, required for proper discrimination between resident ER proteins and Golgi-bound cargo molecules; Involved in inositol deacylation of GPI-anchored proteins which plays important roles in the quality control and ER-associated degradation of GPI-anchored proteins. Required for the transport of misfolded protein to the Golgi, although dipensable for the transport of many normal proteins (1029 aa)    
Predicted Functional Partners:
GAA1
Subunit of the GPI (glycosylphosphatidylinositol)-protein transamidase complex, removes the GPI-anchoring signal and attaches GPI to proteins in the ER; Component of the GPI transamidase complex. Required for a terminal step of GPI anchor attachment onto proteins. Affects endocytosis (614 aa)
     
 
  0.947
GPI8
ER membrane glycoprotein subunit of the GPI transamidase complex; adds glycosylphosphatidylinositol (GPI) anchors to newly synthesized proteins; human PIG-K protein is a functional homolog; Mediates GPI anchoring in the endoplasmic reticulum, by replacing a protein’s C-terminal GPI attachment signal peptide with a pre-assembled GPI. During this transamidation reaction, the GPI transamidase forms a carbonyl intermediate with the substrate protein (411 aa)
     
  0.938
GAB1
GPI transamidase subunit, involved in attachment of glycosylphosphatidylinositol (GPI) anchors to proteins; may have a role in recognition of the attachment signal or of the lipid portion of GPI; Component of the GPI transamidase complex. May be involved in the recognition of either the GPI attachment signal or the lipid portion of GPI (394 aa)
       
  0.922
GPI17
Transmembrane protein subunit of the glycosylphosphatidylinositol transamidase complex that adds GPIs to newly synthesized proteins; human PIG-Sp homolog; Component of the GPI transamidase complex. Involved in transfer of GPI to proteins (534 aa)
       
  0.920
ERV25
Protein that forms a heterotrimeric complex with Erp1, Erp2p, and Emp24, member of the p24 family involved in endoplasmic reticulum to Golgi transport; Constituent of COPII-coated endoplasmic reticulum- derived transport vesicles. Required for efficient transport of a subset of secretory proteins to the Golgi. Possesses a C-terminal dilysine motif that interacts with COPI coat subunits. Facilitates retrograde transport from the Golgi to the endoplasmic reticulum (211 aa)
       
 
  0.919
GPI16
Subunit of the glycosylphosphatidylinositol transamidase complex; transmembrane protein; adds GPIs to newly synthesized proteins; human PIG-Tp homolog; Component of the GPI transamidase complex. Involved in transfer of GPI to proteins (610 aa)
       
  0.914
EMP24
Component of the p24 complex; binds to GPI anchor proteins and mediates their efficient transport from the ER to the Golgi; integral membrane protein that associates with endoplasmic reticulum-derived COPII-coated vesicles; Constituent of COPII-coated endoplasmic reticulum- derived transport vesicles. Required for efficient transport of a subset of secretory proteins to the Golgi (203 aa)
       
 
  0.780
ROT2
Glucosidase II catalytic subunit required for normal cell wall synthesis; mutations in rot2 suppress tor2 mutations, and are synthetically lethal with rot1 mutations; Catalytic subunit of glucosidase 2, which cleaves sequentially the 2 innermost alpha-1,3-linked glucose residues from the Glc(2)Man(9)GlcNAc(2) oligosaccharide precursor of immature glycoproteins (954 aa)
     
 
  0.735
GTB1
Glucosidase II beta subunit, forms a complex with alpha subunit Rot2p, involved in removal of two glucose residues from N-linked glycans during glycoprotein biogenesis in the ER; Subunit of glucosidase 2, which cleaves sequentially the 2 innermost alpha-1,3-linked glucose residues from the Glc(2)Man(9)GlcNAc(2) oligosaccharide precursor of immature glycoproteins. Specifically required for the cleavage of the final glucose (702 aa)
       
      0.715
COP1
Alpha subunit of COPI vesicle coatomer complex, which surrounds transport vesicles in the early secretory pathway; The coatomer is a cytosolic protein complex that binds to dilysine motifs and reversibly associates with Golgi non- clathrin-coated vesicles, which further mediate biosynthetic protein transport from the ER, via the Golgi up to the trans Golgi network. Coatomer complex is required for budding from Golgi membranes, and is essential for the retrograde Golgi-to-ER transport of dilysine-tagged proteins (1201 aa)
     
 
  0.685
Your Current Organism:
Saccharomyces cerevisiae
NCBI taxonomy Id: 4932
Other names: Candida robusta, Pachytichospora, S. cerevisiae, Saccharomyces, Saccharomyces capensis, Saccharomyces cerevisiae, Saccharomyces italicus, Saccharomyces oviformis, Saccharomyces uvarum var. melibiosus, lager beer yeast, yeast
Server load: low (9%) [HD]