STRINGSTRING
YGL101W protein (Saccharomyces cerevisiae) - STRING interaction network
"YGL101W" - Putative protein of unknown function in Saccharomyces cerevisiae
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
YGL101WPutative protein of unknown function; non-essential gene with similarity to YBR242W; interacts with the DNA helicase Hpr5p (215 aa)    
Predicted Functional Partners:
YGR149W
Putative protein of unknown function; predicted to be an integal membrane protein (432 aa)
           
  0.698
IMD2
Inosine monophosphate dehydrogenase, catalyzes the rate-limiting step in GTP biosynthesis, expression is induced by mycophenolic acid resulting in resistance to the drug, expression is repressed by nutrient limitatio; Catalyzes the conversion of inosine 5’-phosphate (IMP) to xanthosine 5’-phosphate (XMP), the first committed and rate- limiting step in the de novo synthesis of guanine nucleotides, and therefore plays an important role in the regulation of cell growth. In contrast to the other IMPDH alleles IMD3 and IMD4, the enzymatic activity of IMD2 seems to be intrinsically drug resistant (523 aa)
       
    0.684
IMD1
Nonfunctional protein with homology to IMP dehydrogenase; probable pseudogene, located close to the telomere; is not expressed at detectable levels; YAR073W and YAR075W comprise a continuous reading frame in some strains of S. cerevisiae (403 aa)
       
    0.684
RMD9
Mitochondrial protein required for respiratory growth; mutant phenotype and genetic interactions suggest a role in delivering mt mRNAs to ribosomes; located on matrix face of the inner membrane and loosely associated with mitoribosomes; Involved in the processing or stability of mitochondrial mRNAs. Required for meiotic nuclear division (646 aa)
           
  0.639
PNP1
Purine nucleoside phosphorylase, specifically metabolizes inosine and guanosine nucleosides; involved in the nicotinamide riboside salvage pathway; The purine nucleoside phosphorylases catalyze the phosphorolytic breakdown of the N-glycosidic bond in the beta- (deoxy)ribonucleoside molecules, with the formation of the corresponding free purine bases and pentose-1-phosphate. Cleaves guanosine and inosine (By similarity) (311 aa)
       
    0.626
MEU1
Methylthioadenosine phosphorylase (MTAP), catalyzes the initial step in the methionine salvage pathway; affects polyamine biosynthesis through regulation of ornithine decarboxylase (Spe1p) activity; regulates ADH2 gene expression; Catalyzes the reversible phosphorylation of S-methyl-5’- thioadenosine (MTA) to adenine and 5-methylthioribose-1-phosphate. Involved in the breakdown of MTA, a major by-product of polyamine biosynthesis. Responsible for the first step in the methionine salvage pathway after MTA has been generated from S- adenosylmethionine. Has broad substrate specificity wit [...] (337 aa)
       
    0.626
IMD4
Inosine monophosphate dehydrogenase, catalyzes the first step of GMP biosynthesis, member of a four-gene family in S. cerevisiae, constitutively expressed; Catalyzes the conversion of inosine 5’-phosphate (IMP) to xanthosine 5’-phosphate (XMP), the first committed and rate- limiting step in the de novo synthesis of guanine nucleotides, and therefore plays an important role in the regulation of cell growth (524 aa)
       
    0.624
IMD3
Inosine monophosphate dehydrogenase, catalyzes the first step of GMP biosynthesis, member of a four-gene family in S. cerevisiae, constitutively expressed; Catalyzes the conversion of inosine 5’-phosphate (IMP) to xanthosine 5’-phosphate (XMP), the first committed and rate- limiting step in the de novo synthesis of guanine nucleotides, and therefore plays an important role in the regulation of cell growth (523 aa)
       
    0.624
YAR075W
Non-functional protein with homology IMP dehydrogenase; YAR073W/IMD1 and YAR075W comprise a continuous reading frame in some strains of S. cerevisiae (157 aa)
       
    0.624
CYS4
Cystathionine beta-synthase, catalyzes synthesis of cystathionine from serine and homocysteine, the first committed step in cysteine biosynthesis; responsible for hydrogen sulfide generation; mutations in human ortholog cause homocystinuria (507 aa)
       
  0.618
Your Current Organism:
Saccharomyces cerevisiae
NCBI taxonomy Id: 4932
Other names: Candida robusta, Pachytichospora, S. cerevisiae, Saccharomyces, Saccharomyces capensis, Saccharomyces cerevisiae, Saccharomyces italicus, Saccharomyces oviformis, Saccharomyces uvarum var. melibiosus, lager beer yeast, yeast
Server load: low (7%) [HD]