STRINGSTRING
CWC23 protein (Saccharomyces cerevisiae) - STRING interaction network
"CWC23" - Component of a complex containing Cef1p, putatively involved in pre-mRNA splicing in Saccharomyces cerevisiae
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
CWC23Component of a complex containing Cef1p, putatively involved in pre-mRNA splicing; has similarity to E. coli DnaJ and other DnaJ-like proteins and to S. pombe Cwf23p; Involved in pre-mRNA splicing. May be involved in endoplasmic reticulum-associated protein degradation (ERAD) and required for growth at low and high temperatures (283 aa)    
Predicted Functional Partners:
CEF1
Essential splicing factor; associated with Prp19p and the spliceosome, contains an N-terminal c-Myb DNA binding motif necessary for cell viability but not for Prp19p association, evolutionarily conserved and homologous to S. pombe Cdc5p; Involved in pre-mRNA splicing and cell cycle control. Required for the binding of the NTC complex (or PRP19-associated complex) components to the spliceosome to mediate conformational rearrangement or to stabilize the structure of the spliceosome after U4 snRNA dissociation, which leads to spliceosome maturation. Its absence leads to an arrest of the c [...] (590 aa)
     
 
  0.962
SPP382
Essential protein that forms a dimer with Ntr2p; also forms a trimer, with Ntr2p and Prp43p, that is involved in spliceosome disassembly; found also in a multisubunit complex with the splicing factor Clf1p; suppressor of prp38-1 mutation; Involved in pre-mRNA splicing and spliceosome disassembly. Promotes release of excised lariat intron from the spliceosome by acting as a receptor for PRP43. This targeting of PRP43 leads to disassembly of the spliceosome with the separation of the U2, U5, U6 snRNPs and the NTC complex (708 aa)
     
 
  0.958
NTR2
Essential protein that forms a dimer with Ntr1p; also forms a trimer, with Ntr2p and the DExD/H-box RNA helicase Prp43p, that is involved in spliceosome disassembly; Involved in pre-mRNA splicing and spliceosome disassembly. Promotes release of excised lariat intron from the spliceosome by acting as a receptor for PRP43. This targeting of PRP43 leads to disassembly of the spliceosome with the separation of the U2, U5, U6 snRNPs and the NTC complex (322 aa)
       
 
  0.929
PRP43
RNA helicase in the DEAH-box family, functions in both RNA polymerase I and polymerase II transcript metabolism, involved in release of the lariat-intron from the spliceosome; Pre-mRNA processing factor involved in disassembly of spliceosomes after the release of mature mRNA (767 aa)
       
 
  0.915
YDJ1
Type I HSP40 co-chaperone involved in regulation of the HSP90 and HSP70 functions; involved in protein translocation across membranes; member of the DnaJ family; Probably involved in mitochondrial protein import. Is also required for efficient translocation of pre-pro-alpha-factor. Involved in heme regulation of HAP1, as a component of the high- molecular-weight (HMC) complex (409 aa)
     
 
  0.911
CLF1
Member of the NineTeen Complex (NTC) that contains Prp19p and stabilizes U6 snRNA in catalytic forms of the spliceosome containing U2, U5, and U6 snRNAs; homolog of Drosophila crooked neck protein; interacts with U1 snRNP proteins; Involved in pre-mRNA splicing and cell cycle progression. Required for the spliceosome assembly by promoting the functional integration of the U4/U6.U5 tri-snRNP particle into the U1-, U2-dependent pre-spliceosome. Also recruits PRP19 to the spliceosome, as a component of the NTC complex (or PRP19- associated complex). The association of the NTC complex to t [...] (687 aa)
       
 
  0.910
PRP19
Splicing factor associated with the spliceosome; contains a U-box, a motif found in a class of ubiquitin ligases, and a WD40 domain; Probable ubiquitin-protein ligase involved in pre-mRNA splicing. Acts as a central component of the NTC complex (or PRP19-associated complex) that associates to the spliceosome to mediate conformational rearrangement or to stabilize the structure of the spliceosome after U4 snRNA dissociation, which leads to spliceosome maturation. It is also probably involved in DNA repair (503 aa)
       
 
  0.910
BRR2
RNA-dependent ATPase RNA helicase (DEIH box); required for disruption of U4/U6 base-pairing in native snRNPs to activate the spliceosome for catalysis; homologous to human U5-200kD; RNA helicase that plays an essential role in pre-mRNA splicing as component of the U5 snRNP and U4/U6-U5 tri-snRNP complexes. Involved in spliceosome assembly, activation and disassembly. Mediates changes in the dynamic network of RNA-RNA interactions in the spliceosome. Catalyzes the ATP-dependent unwinding of U4/U6 RNA duplices, an essential step in the assembly of a catalytically active spliceosome (2163 aa)
       
 
  0.896
SNU114
GTPase component of U5 snRNP involved in mRNA splicing via spliceosome; binds directly to U5 snRNA; proposed to be involved in conformational changes of the spliceosome; similarity to ribosomal translocation factor EF-2; Component of the U5 snRNP complex required for pre-mRNA splicing. Binds GTP (1008 aa)
       
 
  0.895
HSH155
U2-snRNP associated splicing factor; forms extensive associations with the branch site-3’ splice site-3’ exon region upon prespliceosome formation; similarity to the mammalian U2 snRNP-associated splicing factor SAP155; Contacts pre-mRNA on both sides of the branch site early in spliceosome assembly (971 aa)
       
 
  0.892
Your Current Organism:
Saccharomyces cerevisiae
NCBI taxonomy Id: 4932
Other names: Candida robusta, Pachytichospora, S. cerevisiae, Saccharomyces, Saccharomyces capensis, Saccharomyces cerevisiae, Saccharomyces italicus, Saccharomyces oviformis, Saccharomyces uvarum var. melibiosus, lager beer yeast, yeast
Server load: low (3%) [HD]