STRINGSTRING
NQM1 protein (Saccharomyces cerevisiae) - STRING interaction network
"NQM1" - Transaldolase of unknown function in Saccharomyces cerevisiae
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
NQM1Transaldolase of unknown function; transcription is repressed by Mot1p and induced by alpha-factor and during diauxic shift; Transaldolase is important for the balance of metabolites in the pentose-phosphate pathway (333 aa)    
Predicted Functional Partners:
TKL2
Transketolase, similar to Tkl1p; catalyzes conversion of xylulose-5-phosphate and ribose-5-phosphate to sedoheptulose-7-phosphate and glyceraldehyde-3-phosphate in the pentose phosphate pathway; needed for synthesis of aromatic amino acids; Catalyzes the transfer of a two-carbon ketol group from a ketose donor to an aldose acceptor, via a covalent intermediate with the cofactor thiamine pyrophosphate (681 aa)
   
  0.999
TKL1
Transketolase, similar to Tkl2p; catalyzes conversion of xylulose-5-phosphate and ribose-5-phosphate to sedoheptulose-7-phosphate and glyceraldehyde-3-phosphate in the pentose phosphate pathway; needed for synthesis of aromatic amino acids; Catalyzes the transfer of a two-carbon ketol group from a ketose donor to an aldose acceptor, via a covalent intermediate with the cofactor thiamine pyrophosphate (680 aa)
   
  0.995
GND2
6-phosphogluconate dehydrogenase (decarboxylating), catalyzes an NADPH regenerating reaction in the pentose phosphate pathway; required for growth on D-glucono-delta-lactone; Catalyzes the oxidative decarboxylation of 6- phosphogluconate to ribulose 5-phosphate and CO(2), with concomitant reduction of NADP to NADPH (492 aa)
   
 
  0.993
HBT1
Substrate of the Hub1p ubiquitin-like protein that localizes to the shmoo tip (mating projection); mutants are defective for mating projection formation, thereby implicating Hbt1p in polarized cell morphogenesis; Polarity-determining protein which forms a conjugate with the ubiquitin-like modifier HUB1. Involved in bud site selection and cellular morphogenesis during conjugation. Required for survival during stationary phase (1046 aa)
     
   
  0.987
PGM2
Phosphoglucomutase, catalyzes the conversion from glucose-1-phosphate to glucose-6-phosphate, which is a key step in hexose metabolism; functions as the acceptor for a Glc-phosphotransferase; Major phosphoglucomutase isozyme that catalyzes the reversible interconversion of glucose 1-phosphate and glucose 6- phosphate (PubMed-5784209). Constitutes about 80-90% of the phosphoglucomutase activity in the cell (PubMed-14264884, PubMed-5231755). Key enzyme in hexose metabolism. The forward reaction is an essential step in the energy metabolism of galactose since the product of the galactose [...] (569 aa)
     
  0.985
SOL4
6-phosphogluconolactonase with similarity to Sol3p; Hydrolysis of 6-phosphogluconolactone to 6- phosphogluconate (255 aa)
   
 
  0.984
ALD3
Cytoplasmic aldehyde dehydrogenase, involved in beta-alanine synthesis; uses NAD+ as the preferred coenzyme; very similar to Ald2p; expression is induced by stress and repressed by glucose; Cytoplasmic aldehyde dehydrogenase involved in ethanol oxidation. Involved in pantothenic acid production through the conversion of 3-aminopropanal to beta-alanine, an intermediate in pantothenic acid (vitamin B5) and coenzyme A (CoA) biosynthesis (506 aa)
   
   
  0.982
MSC1
Protein of unknown function; mutant is defective in directing meiotic recombination events to homologous chromatids; the authentic, non-tagged protein is detected in highly purified mitochondria and is phosphorylated (513 aa)
     
   
  0.981
PFK1
Alpha subunit of heterooctameric phosphofructokinase involved in glycolysis, indispensable for anaerobic growth, activated by fructose-2,6-bisphosphate and AMP, mutation inhibits glucose induction of cell cycle-related genes; Catalyzes the phosphorylation of D-fructose 6-phosphate to fructose 1,6-bisphosphate by ATP, the first committing step of glycolysis (987 aa)
   
  0.978
FBP1
Fructose-1,6-bisphosphatase, key regulatory enzyme in the gluconeogenesis pathway, required for glucose metabolism; undergoes either proteasome-mediated or autophagy-mediated degradation depending on growth conditions; interacts with Vid30p (348 aa)
   
 
  0.977
Your Current Organism:
Saccharomyces cerevisiae
NCBI taxonomy Id: 4932
Other names: Candida robusta, Pachytichospora, S. cerevisiae, Saccharomyces, Saccharomyces capensis, Saccharomyces cerevisiae, Saccharomyces italicus, Saccharomyces oviformis, Saccharomyces uvarum var. melibiosus, lager beer yeast, yeast
Server load: low (2%) [HD]