STRINGSTRING
PDC6 protein (Saccharomyces cerevisiae) - STRING interaction network
"PDC6" - Minor isoform of pyruvate decarboxylase, decarboxylates pyruvate to acetaldehyde, involved in amino acid catabolism in Saccharomyces cerevisiae
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
PDC6Minor isoform of pyruvate decarboxylase, decarboxylates pyruvate to acetaldehyde, involved in amino acid catabolism; transcription is glucose- and ethanol-dependent, and is strongly induced during sulfur limitation; Minor of three pyruvate decarboxylases (PDC1, PDC5, PDC6) implicated in the nonoxidative conversion of pyruvate to acetaldehyde and carbon dioxide during alcoholic fermentation. Most of the produced acetaldehyde is subsequently reduced to ethanol, but some is required for cytosolic acetyl-CoA production for biosynthetic pathways. The enzyme is also one of five 2-oxo acid de [...] (563 aa)    
Predicted Functional Partners:
PDC5
Minor isoform of pyruvate decarboxylase, key enzyme in alcoholic fermentation, decarboxylates pyruvate to acetaldehyde, regulation is glucose- and ethanol-dependent, repressed by thiamine, involved in amino acid catabolism; Second most abundant of three pyruvate decarboxylases (PDC1, PDC5, PDC6) implicated in the nonoxidative conversion of pyruvate to acetaldehyde and carbon dioxide during alcoholic fermentation. Most of the produced acetaldehyde is subsequently reduced to ethanol, but some is required for cytosolic acetyl-CoA production for biosynthetic pathways. The enzyme is also on [...] (563 aa)
   
 
0.986
PDC1
Major of three pyruvate decarboxylase isozymes, key enzyme in alcoholic fermentation, decarboxylates pyruvate to acetaldehyde; subject to glucose-, ethanol-, and autoregulation; involved in amino acid catabolism; Major of three pyruvate decarboxylases (PDC1, PDC5, PDC6) implicated in the nonoxidative conversion of pyruvate to acetaldehyde and carbon dioxide during alcoholic fermentation. Most of the produced acetaldehyde is subsequently reduced to ethanol, but some is required for cytosolic acetyl-CoA production for biosynthetic pathways. The enzyme is also one of five 2-oxo acid decar [...] (563 aa)
   
 
0.986
ALD3
Cytoplasmic aldehyde dehydrogenase, involved in beta-alanine synthesis; uses NAD+ as the preferred coenzyme; very similar to Ald2p; expression is induced by stress and repressed by glucose; Cytoplasmic aldehyde dehydrogenase involved in ethanol oxidation. Involved in pantothenic acid production through the conversion of 3-aminopropanal to beta-alanine, an intermediate in pantothenic acid (vitamin B5) and coenzyme A (CoA) biosynthesis (506 aa)
     
 
  0.980
ALD6
Cytosolic aldehyde dehydrogenase, activated by Mg2+ and utilizes NADP+ as the preferred coenzyme; required for conversion of acetaldehyde to acetate; constitutively expressed; locates to the mitochondrial outer surface upon oxidative stress; Cytosolic aldehyde dehydrogenase which utilizes NADP+ as the preferred coenzyme. Performs the conversion of acetaldehyde to acetate (500 aa)
     
 
  0.979
ADH3
Mitochondrial alcohol dehydrogenase isozyme III; involved in the shuttling of mitochondrial NADH to the cytosol under anaerobic conditions and ethanol production (375 aa)
 
 
 
  0.979
PYK2
Pyruvate kinase that appears to be modulated by phosphorylation; PYK2 transcription is repressed by glucose, and Pyk2p may be active under low glycolytic flux; May be used by cells under conditions in which the level of glycolytic flux is very low (506 aa)
     
 
  0.978
ALD5
Mitochondrial aldehyde dehydrogenase, involved in regulation or biosynthesis of electron transport chain components and acetate formation; activated by K+; utilizes NADP+ as the preferred coenzyme; constitutively expressed; Minor mitochondrial aldehyde dehydrogenase isoform. Plays a role in regulation or biosynthesis of electron transport chain components. Involved in the biosynthesis of acetate during anaerobic growth on glucose (520 aa)
     
 
  0.977
ADH2
Glucose-repressible alcohol dehydrogenase II, catalyzes the conversion of ethanol to acetaldehyde; involved in the production of certain carboxylate esters; regulated by ADR1; This isozyme preferentially catalyzes the conversion of ethanol to acetaldehyde. Acts on a variety of primary unbranched aliphatic alcohols (348 aa)
 
 
 
  0.977
BAT2
Cytosolic branched-chain amino acid (BCAA) aminotransferase, preferentially involved in BCAA catabolism; homolog of murine ECA39; highly expressed during stationary phase and repressed during logarithmic phase; Catalyzes the first reaction in the catabolism of the essential branched chain amino acids leucine, isoleucine, and valine. Catalyzes the formation of methionine from 2-keto-4- methylthiobutyrate (KMTB) in the methionine salvage pathway primarily using branched chain amino acids (leucine, isoleucine, and valine) as well as lysine and proline as the amino donors. Involved in cell [...] (376 aa)
         
  0.976
ALD2
Cytoplasmic aldehyde dehydrogenase, involved in ethanol oxidation and beta-alanine biosynthesis; uses NAD+ as the preferred coenzyme; expression is stress induced and glucose repressed; very similar to Ald3p; Cytoplasmic aldehyde dehydrogenase involved in ethanol oxidation. Required for pantothenic acid production through the conversion of 3-aminopropanal to beta-alanine, an intermediate in pantothenic acid (vitamin B5) and coenzyme A (CoA) biosynthesis (506 aa)
     
 
  0.976
Your Current Organism:
Saccharomyces cerevisiae
NCBI taxonomy Id: 4932
Other names: Candida robusta, Pachytichospora, S. cerevisiae, Saccharomyces, Saccharomyces capensis, Saccharomyces cerevisiae, Saccharomyces italicus, Saccharomyces oviformis, Saccharomyces uvarum var. melibiosus, lager beer yeast, yeast
Server load: low (3%) [HD]