STRINGSTRING
CIR1 protein (Saccharomyces cerevisiae) - STRING interaction network
"CIR1" - Mitochondrial protein that interacts with frataxin in Saccharomyces cerevisiae
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
CIR1Mitochondrial protein that interacts with frataxin (Yfh1p); putative ortholog of mammalian electron transfer flavoprotein complex subunit ETF-beta; may have a role in oxidative stress response; The electron transfer flavoprotein serves as a specific electron acceptor for several dehydrogenases, including five acyl- CoA dehydrogenases, glutaryl-CoA and sarcosine dehydrogenase. It transfers the electrons to the main mitochondrial respiratory chain via ETF-ubiquinone oxidoreductase (ETF dehydrogenase) (By similarity) (261 aa)    
Predicted Functional Partners:
AIM45
Putative ortholog of mammalian electron transfer flavoprotein complex subunit ETF-alpha; interacts with frataxin, Yfh1p; null mutant displays elevated frequency of mitochondrial genome loss; may have a role in oxidative stress response; The electron transfer flavoprotein serves as a specific electron acceptor for several dehydrogenases, including five acyl- CoA dehydrogenases, glutaryl-CoA and sarcosine dehydrogenase. It transfers the electrons to the main mitochondrial respiratory chain via ETF-ubiquinone oxidoreductase (ETF dehydrogenase) (By similarity) (344 aa)
  0.999
CIR2
Putative ortholog of human electron transfer flavoprotein dehydrogenase (ETF-dH); found in a large supramolecular complex with other mitochondrial dehydrogenases; may have a role in oxidative stress response; Accepts electrons from ETF and reduces ubiquinone (631 aa)
 
 
  0.993
YFH1
Mitochondrial matrix iron chaperone; oxidizes and stores iron; interacts with Isu1p to promote Fe-S cluster assembly; mutation results in multiple Fe/S-dependent enzyme deficiencies; human frataxin homolog is mutated in Friedrich’s ataxia; Promotes the biosynthesis of heme as well as the assembly and repair of iron-sulfur clusters by delivering Fe(2+) to proteins involved in these pathways. Plays a role in the protection against iron-catalyzed oxidative stress through its ability to catalyze the oxidation of Fe(2+) to Fe(3+). Can store large amounts of the metal in the form of a ferrih [...] (174 aa)
       
 
  0.831
AIF1
Mitochondrial cell death effector; translocates to the nucleus in response to apoptotic stimuli, homolog of mammalian Apoptosis-Inducing Factor, putative reductase; Putative FAD-dependent oxidoreductase involved in the resistance to cercosporin and other singlet oxygen-generating photosensitizers. Translocates from mitochondria to the nucleus under apoptotic conditions, where it degrades DNA and induces apoptosis (378 aa)
     
 
  0.763
FAS1
Beta subunit of fatty acid synthetase, which catalyzes the synthesis of long-chain saturated fatty acids; contains acetyltransacylase, dehydratase, enoyl reductase, malonyl transacylase, and palmitoyl transacylase activities; Fatty acid synthetase catalyzes the formation of long- chain fatty acids from acetyl-CoA, malonyl-CoA and NADPH. The beta subunit contains domains for- [acyl-carrier-protein] acetyltransferase and malonyltransferase, S-acyl fatty acid synthase thioesterase, enoyl-[acyl-carrier-protein] reductase, and 3-hydroxypalmitoyl-[acyl-carrier-protein] dehydratase (2051 aa)
   
 
  0.754
OYE3
Conserved NADPH oxidoreductase containing flavin mononucleotide (FMN), homologous to Oye2p with different ligand binding and catalytic properties; has potential roles in oxidative stress response and programmed cell death; Oxidizes beta-NADH, beta-NADPH, and alpha-NADPH (400 aa)
     
 
  0.747
OYE2
Conserved NADPH oxidoreductase containing flavin mononucleotide (FMN), homologous to Oye3p with different ligand binding and catalytic properties; may be involved in sterol metabolism, oxidative stress response, and programmed cell death; Oxidizes beta-NADH, beta-NADPH, and alpha-NADPH (400 aa)
     
 
  0.747
POX1
Fatty-acyl coenzyme A oxidase, involved in the fatty acid beta-oxidation pathway; localized to the peroxisomal matrix (748 aa)
   
 
  0.740
SDH1
Flavoprotein subunit of succinate dehydrogenase (Sdh1p, Sdh2p, Sdh3p, Sdh4p), which couples the oxidation of succinate to the transfer of electrons to ubiquinone as part of the TCA cycle and the mitochondrial respiratory chain; Catalytic subunit of succinate dehydrogenase (SDH) that is involved in complex II of the mitochondrial electron transport chain and is responsible for transferring electrons from succinate to ubiquinone (coenzyme Q). SDH1 and SDH2 form the catalytic dimer. Electrons flow from succinate to the FAD bound to SDH1, and sequentially through the iron-sulfur clusters b [...] (640 aa)
   
 
  0.734
BIO3
7,8-diamino-pelargonic acid aminotransferase (DAPA), catalyzes the second step in the biotin biosynthesis pathway; BIO3 is in a cluster of 3 genes (BIO3, BIO4, and BIO5) that mediate biotin synthesis; Catalyzes the transfer of the alpha-amino group from S- adenosyl-L-methionine (SAM) to 7-keto-8-aminopelargonic acid (KAPA) to form 7,8-diaminopelargonic acid (DAPA). It is the only animotransferase known to utilize SAM as an amino donor (480 aa)
       
      0.692
Your Current Organism:
Saccharomyces cerevisiae
NCBI taxonomy Id: 4932
Other names: Candida robusta, Pachytichospora, S. cerevisiae, Saccharomyces, Saccharomyces capensis, Saccharomyces cerevisiae, Saccharomyces italicus, Saccharomyces oviformis, Saccharomyces uvarum var. melibiosus, lager beer yeast, yeast
Server load: low (5%) [HD]