ZPR1 protein (Saccharomyces cerevisiae) - STRING interaction network
"ZPR1" - Essential protein with two zinc fingers, present in the nucleus of growing cells but relocates to the cytoplasm in starved cells via a process mediated by Cpr1p in Saccharomyces cerevisiae
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
protein homology
Your Input:
Gene Fusion
ZPR1Essential protein with two zinc fingers, present in the nucleus of growing cells but relocates to the cytoplasm in starved cells via a process mediated by Cpr1p; binds to translation elongation factor eEF-1 (Tef1p) (486 aa)    
Predicted Functional Partners:
Translational elongation factor EF-1 alpha; also encoded by TEF2; functions in the binding reaction of aminoacyl-tRNA (AA-tRNA) to ribosomes; may also have a role in tRNA re-export from the nucleus; GTP-binding component of the eukaryotic elongation factor 1 complex (eEF1). In its active GTP-bound form, binds to and delivers aminoacyl-tRNA to the A-site of ribosomes during protein biosynthesis. In the presence of a correct codon-anticodon match between the aminoacyl-tRNA and the A-site codon of the ribosome-bound mRNA, the ribosome acts as a GTPase activator and the GTP is hydrolyzed. [...] (458 aa)
Translational elongation factor EF-1 alpha; also encoded by TEF1; functions in the binding reaction of aminoacyl-tRNA (AA-tRNA) to ribosomes; may also have a role in tRNA re-export from the nucleus (458 aa)
UBX (ubiquitin regulatory X) domain-containing protein that interacts with Cdc48p; Involved in CDC48-dependent protein degradation through the ubiquitin/proteasome pathway (500 aa)
Nuclear-enriched ubiquitin-like polyubiquitin-binding protein, required for spindle pole body (SPB) duplication and for transit through the G2/M phase of the cell cycle, involved in proteolysis, interacts with the proteasome; Involved, with RAD23 in spindle pole body duplication. Involved in the ubiquitin-proteasome proteolytic pathway (373 aa)
Putative protein of unknown function; green fluorescent protein (GFP)-fusion protein localizes to the cytoplasm (411 aa)
Transcription factor involved in iron utilization and homeostasis; binds the consensus site PyPuCACCCPu and activates the expression of target genes in response to changes in iron availability; Probable transcription factor that activates the genes for FRE1, FRE2 and FET3 in response to iron deprivation. Iron could interact directly with AFT1 and inhibits its activity (690 aa)
Peptidyl-prolyl cis-trans isomerase (PPIase), binds to the drugs FK506 and rapamycin; also binds to the nonhistone chromatin binding protein Hmo1p and may regulate its assembly or function; PPIases accelerate the folding of proteins. It catalyzes the cis-trans isomerization of proline imidic peptide bonds in oligopeptides (114 aa)
Translation termination factor eRF3, has a role in mRNA deadenylation and decay; altered protein conformation creates the [PSI(+)] prion that alters translational fidelity and results in a nonsense suppressor phenotype; Involved in translation termination. Stimulates the activity of ERF1. Binds guanine nucleotides. Recruited by polyadenylate-binding protein PAB1 to poly(A)-tails of mRNAs. Interaction with PAB1 is also required for regulation of normal mRNA decay through translation termination-coupled poly(A) shortening (685 aa)
Coupling protein that mediates interactions between the Ski complex and the cytoplasmic exosome during 3’-5’ RNA degradation; eRF3-like domain targets nonstop mRNA for degradation; null mutants have superkiller phenotype; Represses the expression of non-poly(A) mRNAs like L-A or M viruses and is therefore involved in antiviral system. Mediates interactions via its N-terminus between the exosome and the SKI complex which operate in the 3’-to-5’ mRNA-decay pathway. By interacting with NAM7, is also required for nonsense-mediated 3’-to-5’ mRNA-decay (NMD). May recognize a stalled 80S ribo [...] (747 aa)
GTPase with similarity to translation release factors; together with binding partner Dom34p, facilitates ribosomal subunit dissociation and peptidyl-tRNA release when translation is stalled; genetically implicated in mRNA no-go decay; Involved in protein translation. Together with DOM34, may function in recognizing stalled ribosomes and triggering endonucleolytic cleavage of the mRNA, a mechanism to release non- functional ribosomes and degrade damaged mRNAs (611 aa)
Your Current Organism:
Saccharomyces cerevisiae
NCBI taxonomy Id: 4932
Other names: Candida robusta, Pachytichospora, S. cerevisiae, Saccharomyces, Saccharomyces capensis, Saccharomyces cerevisiae, Saccharomyces italicus, Saccharomyces oviformis, Saccharomyces uvarum var. melibiosus, lager beer yeast, yeast
Server load: low (7%) [HD]