STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
ENO1Enolase I, a phosphopyruvate hydratase; catalyzes conversion of 2-phosphoglycerate to phosphoenolpyruvate during glycolysis and the reverse reaction during gluconeogenesis; expression repressed in response to glucose; protein abundance increases in response to DNA replication stress; N-terminally propionylated in vivo; ENO1 has a paralog, ENO2, that arose from the whole genome duplication. (437 aa)    
Predicted Functional Partners:
ENO2
Enolase II, a phosphopyruvate hydratase; catalyzes conversion of 2-phosphoglycerate to phosphoenolpyruvate during glycolysis and the reverse reaction during gluconeogenesis; expression induced in response to glucose; ENO2 has a paralog, ENO1, that arose from the whole genome duplication.
  
0.999
CDC19
Pyruvate kinase; functions as a homotetramer in glycolysis to convert phosphoenolpyruvate to pyruvate, the input for aerobic (TCA cycle) or anaerobic (glucose fermentation) respiration; regulated via allosteric activation by fructose bisphosphate; CDC19 has a paralog, PYK2, that arose from the whole genome duplication.
  
 0.997
FBA1
Fructose 1,6-bisphosphate aldolase; required for glycolysis and gluconeogenesis; catalyzes conversion of fructose 1,6 bisphosphate to glyceraldehyde-3-P and dihydroxyacetone-P; locates to mitochondrial outer surface upon oxidative stress; N-terminally propionylated in vivo; Belongs to the class II fructose-bisphosphate aldolase family.
  
 
 0.997
GPM1
Tetrameric phosphoglycerate mutase; mediates the conversion of 3-phosphoglycerate to 2-phosphoglycerate during glycolysis and the reverse reaction during gluconeogenesis; Belongs to the phosphoglycerate mutase family. BPG- dependent PGAM subfamily.
  
 0.997
ERR1
Enolase-related protein 1; Putative phosphopyruvate hydratase.
  
0.997
PGI1
Glycolytic enzyme phosphoglucose isomerase; catalyzes the interconversion of glucose-6-phosphate and fructose-6-phosphate; required for cell cycle progression and completion of the gluconeogenic events of sporulation.
  
 0.995
PGK1
3-phosphoglycerate kinase; catalyzes transfer of high-energy phosphoryl groups from the acyl phosphate of 1,3-bisphosphoglycerate to ADP to produce ATP; key enzyme in glycolysis and gluconeogenesis.
  
 0.993
PYK2
Pyruvate kinase; appears to be modulated by phosphorylation; transcription repressed by glucose, and Pyk2p may be active under low glycolytic flux; PYK2 has a paralog, CDC19, that arose from the whole genome duplication.
  
 0.989
GPM2
Homolog of Gpm1p phosphoglycerate mutase; converts 3-phosphoglycerate to 2-phosphoglycerate in glycolysis; may be non-functional; GPM2 has a paralog, GPM3, that arose from the whole genome duplication.
  
 0.987
TDH2
Glyceraldehyde-3-phosphate dehydrogenase (GAPDH), isozyme 2; involved in glycolysis and gluconeogenesis; tetramer that catalyzes reaction of glyceraldehyde-3-phosphate to 1,3 bis-phosphoglycerate; detected in cytoplasm and cell wall; protein abundance increases in response to DNA replication stress; GAPDH-derived antimicrobial peptides are active against a wide variety of wine-related yeasts and bateria; TDH2 has a paralog, TDH3, that arose from the whole genome duplication.
  
 
 0.987
Your Current Organism:
Saccharomyces cerevisiae
NCBI taxonomy Id: 4932
Other names: ATCC 18824, Candida robusta, Mycoderma cerevisiae, NRRL Y-12632, S. cerevisiae, Saccharomyces capensis, Saccharomyces italicus, Saccharomyces oviformis, Saccharomyces uvarum var. melibiosus, yeast
Server load: low (30%) [HD]