STRINGSTRING
IRE1 protein (Saccharomyces cerevisiae) - STRING interaction network
"IRE1" - Serine-threonine kinase and endoribonuclease in Saccharomyces cerevisiae
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
IRE1Serine-threonine kinase and endoribonuclease; transmembrane protein that mediates the unfolded protein response (UPR) by regulating Hac1p synthesis through HAC1 mRNA splicing; Kar2p binds inactive Ire1p and releases from it upon ER stress; Senses unfolded proteins in the lumen of the endoplasmic reticulum via its N-terminal domain which leads to enzyme auto- activation. The active endoribonuclease domain splices HAC1 precursor mRNA to produce the mature form which then induces transcription of UPR target genes (1115 aa)    
Predicted Functional Partners:
KAR2
ATPase involved in protein import into the ER, also acts as a chaperone to mediate protein folding in the ER and may play a role in ER export of soluble proteins; regulates the unfolded protein response via interaction with Ire1p; Probably plays a role in facilitating the assembly of multimeric protein complexes inside the ER. Is required for secretory polypeptide translocation. May physically associate with SEC63 protein in the endoplasmic reticulum and this interaction may be regulated by ATP hydrolysis (682 aa)
       
 
  0.992
CYR1
Adenylate cyclase, required for cAMP production and cAMP-dependent protein kinase signaling; the cAMP pathway controls a variety of cellular processes, including metabolism, cell cycle, stress response, stationary phase, and sporulation; Plays essential roles in regulation of cellular metabolism by catalyzing the synthesis of a second messenger, cAMP (2026 aa)
   
  0.982
DER1
Endoplasmic reticulum membrane protein, required for ER-associated protein degradation of misfolded or unassembled proteins; N- and C- termini protrude into the cytoplasm, has similarity to Dfm1p; Component of the endoplasmic reticulum-associated degradation (ERAD) pathway. Specifically required for the ERAD-L pathway which mediates the degradation of proteins with misfolded lumenal domains within the endoplasmic reticulum (211 aa)
       
 
  0.973
HAC1
Basic leucine zipper (bZIP) transcription factor (ATF/CREB1 homolog) that regulates the unfolded protein response, via UPRE binding, and membrane biogenesis; ER stress-induced splicing pathway facilitates efficient Hac1p synthesis; Transcriptional activator involved in the unfolded protein response (UPR) pathway. Recognizes and binds to the UPR element (UPRE) in the promoter of UPR-regulated genes such as KAR2, PDI1, EUG1 and FKB2. Increases the synthesis of endoplasmic reticulum-resident proteins required for protein folding as well as components of the secretory pathway (238 aa)
       
 
  0.966
ACC1
Acetyl-CoA carboxylase, biotin containing enzyme that catalyzes the carboxylation of acetyl-CoA to form malonyl-CoA; required for de novo biosynthesis of long-chain fatty acids; Carries out three functions- biotin carboxyl carrier protein, biotin carboxylase and carboxyltransferase. Involved in the synthesis of very-long-chain fatty acid synthesis which is required to maintain a functional nuclear envelope. Required for acylation and vacuolar membrane association of VAC8 which is necessary to maintain a normal morphology of the vacuole (2233 aa)
   
 
  0.953
HFA1
Mitochondrial acetyl-coenzyme A carboxylase, catalyzes the production of malonyl-CoA in mitochondrial fatty acid biosynthesis; Catalyzes the rate-limiting reaction in the mitochondrial fatty acid synthesis (FAS) type II pathway. Responsible for the production of the mitochondrial malonyl-CoA, used for the biosynthesis of the cofactor lipoic acid. This protein carries three functions- biotin carboxyl carrier protein, biotin carboxylase, and carboxyltransferase (2123 aa)
   
 
  0.943
CNE1
Calnexin; integral membrane ER chaperone involved in folding and quality control of glycoproteins; chaperone activity is inhibited by Mpd1p, with which Cne1p interacts; 24% identical to mammalian calnexin; Ca+ binding not yet shown in yeast; Interacts with newly synthesized glycoproteins in the endoplasmic reticulum. It may act in assisting protein assembly and/or in the retention within the ER of unassembled protein subunits. It seems to play a major role in the quality control apparatus of the ER by the retention of incorrectly folded proteins (502 aa)
       
 
  0.941
HRD1
Ubiquitin-protein ligase required for endoplasmic reticulum-associated degradation (ERAD) of misfolded proteins; genetically linked to the unfolded protein response (UPR); regulated through association with Hrd3p; contains an H2 ring finger; E3 ubiquitin-protein ligase which accepts ubiquitin specifically from endoplasmic reticulum-associated UBC1 and UBC7 E2 ligases, and transfers it to substrates promoting their degradation. Mediates the degradation of endoplasmic reticulum proteins (ERQC), also called ER-associated degradation (ERAD). Component of the HRD1 ubiquitin ligase complex, [...] (551 aa)
     
 
  0.938
LHS1
Molecular chaperone of the endoplasmic reticulum lumen, involved in polypeptide translocation and folding; nucleotide exchange factor for the ER lumenal Hsp70 chaperone Kar2p; regulated by the unfolded protein response pathway; Chaperone required for protein translocation and folding in the endoplasmic reticulum (881 aa)
       
 
  0.936
BCY1
Regulatory subunit of the cyclic AMP-dependent protein kinase (PKA), a component of a signaling pathway that controls a variety of cellular processes, including metabolism, cell cycle, stress response, stationary phase, and sporulation; Regulatory subunit of the cyclic AMP-dependent protein kinase (PKA), an effector of the Ras/cAMP pathway. Inhibits PKA activity in the absence of cAMP. cAMP activates PKA and promotes growth and proliferation in response to good nutrient conditions. Together with ZDS1, provides a negative feedback control on the cell wall integrity-signaling pathway by [...] (416 aa)
     
  0.917
Your Current Organism:
Saccharomyces cerevisiae
NCBI taxonomy Id: 4932
Other names: Candida robusta, Pachytichospora, S. cerevisiae, Saccharomyces, Saccharomyces capensis, Saccharomyces cerevisiae, Saccharomyces italicus, Saccharomyces oviformis, Saccharomyces uvarum var. melibiosus, lager beer yeast, yeast
Server load: low (6%) [HD]