STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
TRR2Mitochondrial thioredoxin reductase; involved in protection against oxidative stress, required with Glr1p to maintain the redox state of Trx3p; contains active-site motif (CAVC) present in prokaryotic orthologs; binds NADPH and FAD; TRR2 has a paralog, TRR1, that arose from the whole genome duplication. (342 aa)    
Predicted Functional Partners:
TRR1
Cytoplasmic thioredoxin reductase; key regulatory enzyme that determines the redox state of the thioredoxin system, which acts as a disulfide reductase system and protects cells against both oxidative and reductive stress; protein abundance increases in response to DNA replication stress; TRR1 has a paralog, TRR2, that arose from the whole genome duplication; Belongs to the class-II pyridine nucleotide-disulfide oxidoreductase family.
  
 
0.999
TRX3
Mitochondrial thioredoxin; highly conserved oxidoreductase required to maintain the redox homeostasis of the cell, forms the mitochondrial thioredoxin system with Trr2p, redox state is maintained by both Trr2p and Glr1p.
  
 
 0.996
GLR1
Cytosolic and mitochondrial glutathione oxidoreductase; converts oxidized glutathione to reduced glutathione; cytosolic Glr1p is the main determinant of the glutathione redox state of the mitochondrial intermembrane space; mitochondrial Glr1p has a role in resistance to hyperoxia; protein abundance increases in response to DNA replication stress.
  
 0.985
TRX2
Thioredoxin-2; Cytoplasmic thioredoxin isoenzyme; part of thioredoxin system which protects cells against oxidative and reductive stress; forms LMA1 complex with Pbi2p; acts as a cofactor for Tsa1p; required for ER-Golgi transport and vacuole inheritance; with Trx1p, facilitates mitochondrial import of small Tims Tim9p, Tim10p, Tim13p by maintaining them in reduced form; abundance increases under DNA replication stress; TRX2 has a paralog, TRX1, that arose from the whole genome duplication.
  
 
 0.961
TRX1
Thioredoxin-1; Cytoplasmic thioredoxin isoenzyme; part of thioredoxin system which protects cells against oxidative and reductive stress; forms LMA1 complex with Pbi2p; acts as a cofactor for Tsa1p; required for ER-Golgi transport and vacuole inheritance; with Trx2p, facilitates mitochondrial import of small Tims Tim9p, Tim10p, Tim13p by maintaining them in reduced form; abundance increases iunder DNA replication stress; TRX1 has a paralog, TRX2, that arose from the whole genome duplication.
  
 
 0.960
PRX1
Mitochondrial peroxiredoxin with thioredoxin peroxidase activity; has a role in reduction of hydroperoxides; reactivation requires Trr2p and glutathione; induced during respiratory growth and oxidative stress; phosphorylated; protein abundance increases in response to DNA replication stress.
  
 
 0.913
CYS3
Cystathionine gamma-lyase; catalyzes one of the two reactions involved in the transsulfuration pathway that yields cysteine from homocysteine with the intermediary formation of cystathionine; protein abundance increases in response to DNA replication stress; Belongs to the trans-sulfuration enzymes family.
   
 
 0.909
GND2
6-phosphogluconate dehydrogenase (decarboxylating); catalyzes an NADPH regenerating reaction in the pentose phosphate pathway; required for growth on D-glucono-delta-lactone; GND2 has a paralog, GND1, that arose from the whole genome duplication.
  
  
 0.818
GND1
6-phosphogluconate dehydrogenase (decarboxylating); catalyzes an NADPH regenerating reaction in the pentose phosphate pathway; required for growth on D-glucono-delta-lactone and adaptation to oxidative stress; GND1 has a paralog, GND2, that arose from the whole genome duplication.
     
 0.799
TSA2
Peroxiredoxin TSA2; Stress inducible cytoplasmic thioredoxin peroxidase; cooperates with Tsa1p in the removal of reactive oxygen, nitrogen and sulfur species using thioredoxin as hydrogen donor; deletion enhances the mutator phenotype of tsa1 mutants; protein abundance increases in response to DNA replication stress; TSA2 has a paralog, TSA1, that arose from the whole genome duplication; Belongs to the peroxiredoxin family. AhpC/Prx1 subfamily.
  
 
 0.789
Your Current Organism:
Saccharomyces cerevisiae
NCBI taxonomy Id: 4932
Other names: ATCC 18824, Candida robusta, Mycoderma cerevisiae, NRRL Y-12632, S. cerevisiae, Saccharomyces capensis, Saccharomyces italicus, Saccharomyces oviformis, Saccharomyces uvarum var. melibiosus, yeast
Server load: low (40%) [HD]